(require-library anaphora simple-tests) (import anaphora simple-tests) (define-test (basics?) (check (equal? (aif (memv 3 '(1 2 3 4 5)) it) '(3 4 5)) (equal? (nif it (memv 3 '(1 2 3 4 5)) it) '(3 4 5)) (equal? (acond ((memv 6 '(1 2 3 4 5)) it) ((memv 3 '(1 2 3 4 5)) it) (else it)) '(3 4 5)) (equal? (ncond it ((memv 6 '(1 2 3 4 5)) it) ((memv 3 '(1 2 3 4 5)) it) (else it)) '(3 4 5)) (eq? (acond ((memv 6 '(1 2 3 4 5)) it) (else it)) #t) (eq? (ncond it ((memv 6 '(1 2 3 4 5)) it) (else it)) #t) (equal? (let ((lst '(1 2 3 4 5 #f)) (res '())) (awhile (car lst) (set! res (cons (car lst) res)) (set! lst (cdr lst))) res) '(5 4 3 2 1)) (equal? (let ((lst '(1 2 3 4 5 #f)) (res '())) (nwhile it (car lst) (set! res (cons (car lst) res)) (set! lst (cdr lst))) res) '(5 4 3 2 1)) (equal? (awhen (memv 3 '(1 2 3 4 5)) it) '(3 4 5)) (equal? (nwhen it (memv 3 '(1 2 3 4 5)) it) '(3 4 5)) (= (aand '(1 2 3 4 5) (cdr it) (car it)) 2) (= (nand it '(1 2 3 4 5) (cdr it) (cdr it) (car it)) 3) (equal? (map (alambda (n) (if (zero? n) 1 (* n (self (- n 1))))) '(1 2 3 4 5)) '(1 2 6 24 120)) (equal? (map (nlambda self (n) (if (zero? n) 1 (* n (self (- n 1))))) '(1 2 3 4 5)) '(1 2 6 24 120)) )) (define-test (properties?) (check (define-properties color weight) (color! 'foo 'red) (eq? (color 'foo) 'red) (weight! 'foo 5) (= (weight 'foo) 5) (color! 'foo 'blue) (eq? (color 'foo) 'blue) (weight! 'foo 50) (= (weight 'foo) 50) )) (define-test (list-recursers?) (check (define llength (list-recurser (lambda (lst th) (add1 (th))) 0)) (define allength (alist-recurser (add1 (go-on)) 0)) (= (llength '(1 2 3)) 3) (= (allength '(1 2 3)) 3) (define (lsome? ok?) (list-recurser (lambda (lst th) (or (ok? (car lst)) (th))) #f)) (define (alsome? ok?) (alist-recurser (or (ok? (car it)) (go-on)) #f)) ((lsome? odd?) '(2 3 4)) ((alsome? odd?) '(2 3 4)) (define (alevery? ok?) (alist-recurser (and (ok? (car it)) (go-on)) #t)) (not ((alevery? odd?) '(1 2 3))) (define (lfind ok?) (list-recurser (lambda (lst th) (if (ok? (car lst)) lst (th))) '())) (define (alfind ok?) (alist-recurser (if (ok? (car it)) it (go-on)) '())) (equal? ((lfind odd?) '(2 3 4)) '(3 4)) (equal? ((alfind odd?) '(2 3 4)) '(3 4)) (define lcopy (list-recurser (lambda (lst th) (cons (car lst) (th))) '())) (define alcopy (alist-recurser (cons (car it) (go-on)) '())) (equal? (lcopy '(1 2 3)) '(1 2 3)) (equal? (alcopy '(1 2 3)) '(1 2 3)) (define lremove-dups (list-recurser (lambda (lst th) (adjoin (car lst) (th))) '())) (define alremove-dups (alist-recurser (adjoin (car it) (go-on)) '())) (define (adjoin obj lst) (if (member obj lst) lst (cons obj lst))) (equal? (sort (lremove-dups '(1 2 1 3 2 4 3)) <) '(1 2 3 4)) (equal? (sort (alremove-dups '(1 2 1 3 2 4 3)) <) '(1 2 3 4)) )) (define-test (tree-recursers?) (check (define tflatten (tree-recurser (lambda (tree left right) (append (left) (or (right) '()))) (lambda (tree) (if (list? tree) tree (list tree))))) (define atflatten (atree-recurser (append (go-left) (or (go-right) '())) (if (list? it) it (list it)))) (equal? (tflatten '(1 (2 3 (4)) 5)) '(1 2 3 4 5)) (equal? (atflatten '(1 (2 3 (4)) 5)) '(1 2 3 4 5)) (define tcopy (tree-recurser (lambda (tree left right) (cons (left) (or (right) '()))) identity)) (define atcopy (atree-recurser (cons (go-left) (or (go-right) '())) it)) (equal? (tcopy '(1 (2 3 (4)) 5)) '(1 (2 3 (4)) 5)) (equal? (atcopy '(1 (2 3 (4)) 5)) '(1 (2 3 (4)) 5)) (define (tfind ok?) (tree-recurser (lambda (tree left right) (or (left) (right))) (lambda (tree) (and (ok? tree) tree)))) (define (atfind ok?) (atree-recurser (or (go-left) (go-right)) (and (ok? it) it))) (= ((tfind odd?) '(2 (4 5) 1)) 5) (= ((atfind odd?) '(2 (4 6) 1)) 1) (define tcount-leaves (tree-recurser (lambda (tree left right) (+ (left) (or (right) 1))) 1)) (define atcount-leaves (atree-recurser (+ (go-left) (or (go-right) 1)) 1)) (= (tcount-leaves '((1 2 (3 4)) (5) 6)) 10) (= (atcount-leaves '((1 2 (3 4)) (5) 6)) 10) )) (define-test (define-anaphor?) (check (define-anaphor alist list #:cascade) (define-anaphor a+ + #:cascade) (define-anaphor a- - #:cascade) (equal? (alist 1 (+ it 2) (* it 3)) '(1 3 9)) (= (a+ 1 (+ it 2) (* it 3)) 13) (= (a- 1 (+ it 2) (* it 3)) -11) (define-anaphor aand and #:cascade) (equal? (aand (list 1 2 3) (cdr it) (cdr it)) '(3)) (define-anaphor awhen when #:first) (= (awhen (* 1 2 3 4 5) (* 2 it)) 240) )) (compound-test (ANAPHORA) (basics?) (properties?) (list-recursers?) (tree-recursers?) (define-anaphor?) )