;; ;; ;; Binary heap implementation. Based on the Ocaml heap implementation ;; by Jean-Christophe Filliatre. Comments in the code are from the ;; original implementation. ;; ;; Copyright 2009-2016 Ivan Raikov. ;; ;; ;; This program is free software: you can redistribute it and/or ;; modify it under the terms of the GNU General Public License as ;; published by the Free Software Foundation, either version 3 of the ;; License, or (at your option) any later version. ;; ;; This program is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; A full copy of the GPL license can be found at ;; . (module binary-heap ( make-binary-heap alist->binary-heap heap-empty? heap-for-each heap-fold heap-insert heap-size heap-get-max heap-delete-max ) (import scheme chicken data-structures) (require-library srfi-1) (import (only srfi-1 fold first second third fourth fifth sixth)) (require-extension datatype matchable) ;; ;; Heaps are encoded as binary trees that have the heap property, ;; namely the value of any node is greater or equal than the nodes in ;; its left and right subtrees. ;; ;; The representation invariant is the following: the number of nodes ;; in the left subtree is equal to the number of nodes in the right ;; subtree, or exceeds it by exactly once. In the first case, we use ;; the constructor [Same] and in the second the constructor [Diff]. ;; Then it can be proved that [2^(h-1) <= n <= 2^h] when [n] is the ;; number of elements and [h] the height of the tree. ;; (define-record-type binary-heap (cons-binary-heap root size key-compare) binary-heap? (root binary-heap-root) (size binary-heap-size) (key-compare binary-heap-key-compare) ) (define-datatype tree tree? (Empty ) (Same (left tree?) (elt pair?) (right tree?)) ;; same number of elements on both sides (Diff (left tree?) (elt pair?) (right tree?)) ;; left has [n+1] nodes and right has [n] ) (define (tree-tag x) (cases tree x (Empty () 'Empty) (Same (l x r) 'Same) (Diff (l x r) 'Diff))) (define-record-printer (tree x out) (cases tree x (Empty () (display "#(Empty)" out)) (Same (l x r) (display "#(Same " out) (display (tree-tag l) out) (display (conc " " x " ") out) (display (tree-tag r) out) (display ")" out)) (Diff (l x r) (display "#(Diff " out) (display (tree-tag l) out) (display (conc " " x " ") out) (display (tree-tag r) out) (display ")" out)))) ;; ;; This macro was borrowed from treap.scm by Oleg Kiselyov ;; (define-syntax dispatch-on-key (lambda (x r c) (let ((key-compare (second x)) (key (third x)) (node-key (fourth x)) (on-greater (fifth x)) (on-less (sixth x))) (let ((%let (r 'let)) (%cond (r 'cond)) (%else (r 'else)) (%positive? (r 'positive?)) (result (r 'result))) `(,%let ((,result (key-compare ,key ,node-key ))) (,%cond ((,%positive? ,result) ,on-greater) (,%else ,on-less))))))) (define (insert key value root key-compare) (let recur ((key key) (value value) (root root)) (cases tree root (Empty () (Same (Empty) (cons key value) (Empty))) ;; insertion to the left (Same (l y r) (dispatch-on-key key-compare key (car y) (Diff (recur (car y) (cdr y) l) (cons key value) r) (Diff (recur key value l) y r))) ;; insertion to the right (Diff (l y r) (dispatch-on-key key-compare key (car y) (Same l (cons key value) (recur (car y) (cdr y) r)) (Same l y (recur key value r))))) )) (define (maximum root) (cases tree root (Empty () #f) (Same (l x r) x) (Diff (l x r) x))) ;; extracts one element on the bottom level of the tree, while ;; maintaining the representation invariant (define (extract-last root) (match root (($ tree 'Empty) #f) (($ tree 'Same ($ tree 'Empty) x ($ tree 'Empty)) (list x (Empty))) (($ tree 'Same l x r) (match-let (((y r1) (extract-last r))) (list y (Diff l x r1)))) (($ tree 'Diff l x r) (match-let (((y l1) (extract-last l))) (list y (Same l1 x r)))))) ;; removes the topmost element of the tree and inserts a new element (define (descent key value root key-compare) (let recur ((root root)) (match root (($ tree 'Empty) #f) (($ tree 'Same ($ tree 'Empty) _ ($ tree 'Empty)) (Same (Empty) (cons key value) (Empty))) (($ tree 'Diff (and l ($ tree 'Same _ z _)) _ ($ tree 'Empty)) (dispatch-on-key key-compare key (car z) (Diff l (cons key value) (Empty)) (Diff (Same (Empty ) (cons key value) (Empty)) z (Empty)))) (($ tree tag l _ r) (let ((op (case tag ((Same) Same) ((Diff) Diff))) (ml (maximum l)) (mr (maximum r))) (if (and (positive? (key-compare key (car ml))) (positive? (key-compare key (car mr)))) (op l (cons key value) r) (dispatch-on-key key-compare (car ml) (car mr) (op (recur l) ml r) (op l mr (recur r))))))) )) (define (delete root key-compare) (match root (($ tree 'Empty) #f) (($ tree 'Empty ($ tree 'Empty) x ($ tree 'Empty)) (Empty)) (else (match-let (((y root1) (extract-last root))) (descent (car y) (cdr y) root1 key-compare))))) (define (make-binary-heap key-compare) (cons-binary-heap (Empty) 0 key-compare)) (define (heap-empty? h) (cases tree (binary-heap-root h) (Empty () #t) (else #f))) (define (heap-for-each f h) (let recur ((root (binary-heap-root h))) (match root (($ tree 'Empty) (begin)) (($ tree tag l x r) (begin (recur l) (f x) (recur r))) )) ) (define (heap-fold f init h) (define (foldf tree ax) (match tree (($ tree 'Empty) (begin)) (($ tree tag l x r) (foldf l (f x (foldf r ax)))))) (foldf (binary-heap-root h) (f init))) (define (heap-insert key value h) (let ((new-root (insert key value (binary-heap-root h) (binary-heap-key-compare h)))) (cons-binary-heap new-root (+ 1 (binary-heap-size h)) (binary-heap-key-compare h)))) (define (alist->binary-heap alst key-compare) (let ((aheap (cons-binary-heap (Empty) 0 key-compare))) (fold (lambda (x h) (heap-insert (car x) (cdr x) h)) aheap alst) )) (define (heap-size h) (binary-heap-size h)) (define (heap-get-max h) (maximum (binary-heap-root h))) (define (heap-delete-max h) (let ((new-root (delete (binary-heap-root h) (binary-heap-key-compare h)))) (cons-binary-heap new-root (- (binary-heap-size h) 1) (binary-heap-key-compare h)))) )