#|[ Author: Juergen Lorenz ju (at) jugilo (dot) de Copyright (c) 2011-2014, Juergen Lorenz All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ]|# #|[ This package defines two libraries, macro-helpers and bindings. The former exports a lot of procedures, most of which are needed in the latter, some of them at compile-time. The latter exports a series of macros, most of them binding constructs, which gives the library its name. The others are helpful in writing low-level macros. In particular, macro-rules is as easy to use as syntax-rules, but much more powerful, since it's a procedural macro and hence can do much of its work in local procedures at compile-time. The fundamental binding-construct, bind, is patterned after Paul Graham's dbind, cf. "On Lisp", p. 232. In Chicken, dbind for lists could look like as follows (define-syntax dbind (ir-macro-transformer (lambda (form inject compare?) (letrec ( (mappend (lambda (fn lists) (apply append (map fn lists)))) (destruc (lambda (pat seq) (let loop ((pat pat) (seq seq) (n 0)) (if (pair? pat) (let ((p (car pat)) (recu (loop (cdr pat) seq (+ n 1)))) (if (symbol? p) (cons `(,p (list-ref ,seq ,n)) recu) (let ((g (gensym))) (cons (cons `(,g (list-ref ,seq ,n)) (loop p g 0)) recu)))) (let ((tail `(list-tail ,seq ,n))) (if (null? pat) '() `((,pat ,tail)))))))) (dbind-ex (lambda (binds body) (if (null? binds) `(begin ,@body) `(let ,(map (lambda (b) (if (pair? (car b)) (car b) b)) binds) ,(dbind-ex (mappend (lambda (b) (if (pair? (car b)) (cdr b) '())) binds) body))))) ) (let ((pat (cadr form)) (seq (caddr form)) (body (cdddr form)) (gseq 'seq)) `(let ((,gseq ,seq)) ,(dbind-ex (destruc pat gseq) body))))))) Note, that the destructuring procedures are local to this macro. This is necessary in Chicken for the macro to work, in particular in compiled code. We circumvent this problem by packaging the helpers in an extra library, which can be required within a begin-for-syntax. Note further, that ir-macro-transformer does all the necessary renaming transparently behind the scene, even if the helpers are defined in another module. In particular, gseq needn't be a gensym. And note, that Graham's code didn't check for seq's length, i.e. (dbind (a b) '(1 2 3) (list a b) would happily return '(1 2). This problem is tackled with dbind-len below. And last, but not least, some macros should accept non-symbol literals, in particular bind-case and macro-rules; dbind-lit will help here. Another feature, which we would like to have, is a wild-card, represented by the symbol underscore. It matches everything, but binds nothing. So it can appear multiple times in the same macro. We'll provide two versions of destruc, one for lists - or, to be more precise, for nested pseudolists - and one for generic sequences. ]|# #|[ The bindings module below should demonstrate the power of destructuring. It exports a lot of binding constructs, the most important of it being bind, which is a version of Common Lisp's destructuring-bind, but destructures generic sequences, can check the bound variables in an optional where clause and accepts non-symbol listerals, which match only if they are equal. The latter is important for bind-case, a version of matchable's match, and macro-rules, a low-level version of syntax-rules. Note, that the internal documentation uses special repeated dots besides ellipses: Two or four dots means: Repeat the expression on the left at most once or at least once respectively. ]|# (module bindings (export bindings bindable? bind-case bind-let bind-let* bind-letrec bindrec bind-lambda bind-lambda* bind* bind-set! bind bind-define bind-case-lambda bind-case-lambda* bind/cc macro-rules define-macro define-er-macro let-er-macro letrec-er-macro) (import scheme ; (only macro-helpers ; define-syntax-rule ; replace* ; seq-length seq-ref seq-tail ; bind-exception ; symbol-dispatcher) (only chicken use ;;; condition-case print gensym current-exception-handler make-property-condition condition-predicate get-condition-property signal abort)) (reexport (only macro-helpers rename-prefix bind-exception seq-length-ref-tail!)) (begin-for-syntax (require-library macro-helpers)) ;;; (use (only macro-helpers define-syntax-rule replace* seq-length seq-ref seq-tail bind-exception symbol-dispatcher)) ;;; (import-for-syntax (only macro-helpers once-only remove-wildcards rename-prefix extract collect* flatten-map* map* mappend replace* plength plist-ref plist-tail seq-length seq-ref seq-tail found? collect* prefixed-with? strip-prefix list-destruc seq-destruc dbind-ex dbind-lit dbind-len dbind-def) (only chicken receive condition-case)) #|[ Documentation dispatcher ]|# (define bindings (symbol-dispatcher '( (bind-set! macro; (bind-set! pat seq) "sets multiple variables by destructuring its sequence argument") (bind-define macro: (bind-define pat seq) "defines multiple variables by destructuring its sequence argument") (bind macro: (bind pat seq (where . fenders) .. xpr ....) "a variant of Common Lisp's destructuring-bind") (bindable? macro: (bindable? pat . fenders) "returns a unary predicate, which checks" "if its argument matches pat and passes all fenders") (bind-lambda macro: (bind-lambda pat (where . fenders) .. xpr ....) "combination of lambda and bind, one pattern argument") (bind-lambda* macro: (bind-lambda* pat (where . fenders) .. xpr ....) "combination of lambda and bind, multiple pattern arguments") (bindrec macro: (bindrec pat seq (where . fenders) .. xpr ....) "recursive version of bind") (bind* macro: (bind* loop pat seq (where . fenders) .. xpr ....) "named version of bind") (bind-let macro: (bind-let loop .. ((pat seq) ...) xpr ....) "nested version of let, named and unnamed") (bind-let* macro: (bind-let* ((pat seq) ...) xpr ....) "nested version of let*") (bind-letrec macro: (bind-letrec ((pat seq) ...) xpr ....) "recursive version of bind-let") (bind-case macro: (bind-case seq (pat (where . fenders) .. xpr ....) ....) "matches seq against pat with optional fenders in a case regime") (bind-case-lambda macro: (bind-case-lambda (pat (where . fenders) .. xpr ....) ....) "combination of lambda and bind-case with one pattern argument") (bind-case-lambda* macro: (bind-case-lambda* (pat (where . fenders) .. xpr ....) ....) "combination of lambda and bind-case with multiple pattern arguments") (bind/cc macro: (bind/cc cc xpr ....) "binds cc to the current contiunation" "and execute xpr ... in this context") (macro-rules macro: (macro-rules literal ... (keyword ...) (pat tpl) ....) "low-level version of syntax-rules" "with optional injected literals" "and quasiquoted templates") (define-macro macro: one-of (define-macro (name . args) xpr ....) (define-macro (name . args) (keywords x ...) xpr ....) (define-macro (name . args) (inject y ...) xpr ....) (define-macro (name . args) (inject y ...) (keywords x ...) xpr ....) (define-macro (name . args) (keywords x ...) (inject y ...) xpr ....) "a version of macro-rules with only one rule") (define-er-macro macro: (define-er-macro (name . args) (keywords key ...) .. xpr ....) "explicit-renaming macro where prefixed symbols are renamed" "The prefix is taken from the parameter rename-prefix") (let-er-macro macro: (let-er-macro ((code tpl) ...) xpr ....) "local parallel version of define-er-macro") (letrec-er-macro macro: (letrec-er-macro ((code tpl) ...) xpr ....) "local recursive version of define-er-macro") ))) #|[ Let's start with a new exception-handler, which is able to cope with bind exceptions ]|# (current-exception-handler (let ((old-handler (current-exception-handler))) (lambda (var) (if ((condition-predicate 'bind) var) (begin (display "Error: ") (print (get-condition-property var 'bind 'location)) (print (get-condition-property var 'bind 'message)) (for-each print (get-condition-property var 'bind 'arguments)) (abort (make-property-condition 'exn 'message "exception-handler returned"))) (old-handler var))))) #|[ The first two macros are nested versions of set! and define. They allow the simultaneous definition of procedures which have access to common state. In fact, it suffices to implement bind-set! since Chicken reduces define to set! anyway: try (expand '(define a 1)) to convince yourself. So we could implement bind-define as an alias to bind-set! But according to the standard, set! changes existing variables, while define defines new ones. So our definition will reflect this. bind-set! replaces the values of symbols in a nested lambda-list in one go with the corresponding subeseqessions of its second argument. So, after (bind-set! (a (b (c . d))) '(1 (2 (3 4 5)))) d should have the value (4 5), b the value 2 etc. bind-define does the same, but defines the pattern variables before setting them. The real advantage of this is, that we can define several functions which rely on the same encapsulated state. Consider (bind-define (push top pop) (let ((state '())) (list (lambda (arg) (set! lst (cons arg state))) (lambda () (car state)) (lambda () (set! lst (cdr state)))))) Now we have three procedures, which all operate on the encapsulated list. The implementation uses the fourth procedure, dbind-def, which operates on the return values of seq-destruc. ]|# ;;; (bind-define pat seq) ;;; --------------------- ;;; destructures the sequence seq according to the pattern pat and sets ;;; pattern variables with values corresponding to subexpressions of seq (define-syntax bind-define (ir-macro-transformer (lambda (form inject compare?) (let ((pat (cadr form)) (seq (caddr form)) (gseq 'seq)) `(begin (define ,gseq ,seq) ,(dbind-def 'define (seq-destruc pat gseq))))))) ;;; (bind-set! pat seq) ;;; ------------------- ;;; destructures the sequence seq according to the pattern pat and ;;; defines pattern variables with values corresponding to ;;; subexpressions of seq (define-syntax bind-set! (ir-macro-transformer (lambda (form inject compare?) (let ((pat (cadr form)) (seq (caddr form)) (gseq 'seq)) `(begin (set! ,gseq ,seq) ,(dbind-def 'set! (seq-destruc pat gseq))))))) #|[ Now we'll extend Graham's dbind, allowing non-symbols in the patterns, which must be equal to the corresponding values in the template for a match. ]|# (define-syntax dbind (ir-macro-transformer (lambda (form inject compare?) (let ((pat (cadr form)) (seq (caddr form)) (body (cdddr form)) (gseq 'seq)) `(let ((,gseq ,seq)) ,(receive (symbols literals checks) (seq-destruc pat seq) `(if ,(dbind-len checks) (if ,(dbind-lit literals) ;,(dbind-ex symbols body) ,(dbind-ex (remove-wildcards compare? symbols) body) (signal (bind-exception 'dbind "literals don't match" ',literals))) (signal (bind-exception 'dbind "not matchable" ',pat ,gseq))))))))) ;;; (bind pat seq (where . fenders) .. xpr . xprs) ;;; ---------------------------------------------- ;;; binds pattern variables of pat to corresponding subexpressions of ;;; seq and executes tthe body xpr . xprs in this context. If a where ;;; expression is supplied, all fenders must return #t for seq to be ;;; successfully bound. (define-syntax bind (syntax-rules (where) ((_ pat seq (where . fenders) xpr . xprs) (dbind pat seq (and . fenders) xpr . xprs)) ((_ pat seq xpr . xprs) (dbind pat seq #t xpr . xprs)))) #|[ The next macro, bindable?, can be used to check, if a sequence-expression matches a pattern and passes all fenders. It's used in bind-case below. The implementation relies on bind, which must be protected against exceptions. ]|# ;;; (bindable? pat . fenders) ;;; ------------------------- ;;; returns a unary predicate which checks, if its argument matches pat ;;; and fulfills the predicates in the list fenders (define-syntax-rule (bindable? pat . fenders) (lambda (seq) (condition-case (bind pat seq (and . fenders)) ((exn bind) #f)))) #|[ Now we can define two macros, which simply combine lambda with bind, the first destructures simply one argument, the second a whole list. An example of a call and its result is ((bind-lambda (a (b . c) . d) (list a b c d)) '(1 #(20 30 40) 2 3)) -> '(1 20 #(30 40) (2 3))))) ((bind-lambda* ((a (b . c) . d) (e . f)) (list a b c d e f)) '(1 #(20 30 40) 2 3) '#(4 5 6)) -> '(1 20 #(30 40) (2 3) 4 #(5 6))) ]|# ;;; (bind-lambda pat xpr . xprs) ;;; -------------------------------- ;;; combination of lambda and bind, one pattern argument (define-syntax bind-lambda (syntax-rules (where) ((_ pat (where . fenders) xpr . xprs) (lambda (x) (bind pat x (where . fenders) xpr . xprs))) ((_ pat xpr . xprs) (lambda (x) (bind pat x xpr . xprs))))) ;;; (bind-lambda* pat xpr . xprs) ;;; --------------------------------- ;;; combination of lambda and bind, multiple pattern arguments (define-syntax bind-lambda* (syntax-rules (where) ((_ pat (where . fenders) xpr . xprs) (lambda x (bind pat x (where . fenders) xpr . xprs))) ((_ pat xpr . xprs) (lambda x (bind pat x xpr . xprs))))) #|[ The following macro, bind*, is a named version of bind. It takes an additional argument besides those of bind, which is bound to a recursive procedure, which can be called in bind's body. The pattern variables are initialised with the corresponding subexpressions in seq. For example (bind* loop (x y) '(5 0) (if (zero? x) (list x y) (loop (list (sub1 x) (add1 y))))) -> '(0 5) ]|# ;;; (bind* name pat seq (where . fenders) .. xpr . xprs) ;;; --------------------------------------------------------- ;;; named version of bind (define-syntax bind* (syntax-rules (where) ((_ loop pat seq (where . fenders) xpr . xprs) ((letrec ((loop (bind-lambda pat (where . fenders) xpr . xprs))) ;(lambda (x) ; (bind pat x (where . fenders) xpr . xprs)))) loop) seq)) ((_ loop pat seq xpr . xprs) (bind* loop pat seq (where) xpr . xprs)))) #|[ And here is the recursive version of bind. (bindrec ((o?) e?) (list (list (lambda (m) (if (zero? m) #f (e? (- m 1))))) (lambda (n) (if (zero? n) #t (o? (- n 1))))) (list (o? 95) (e? 95))) -> '(#t #f) It's definition is patterned after a procedural definition of letrec: (define-macro (my-letrec pairs . body) (let ((vars (map car pairs)) (vals (map cadr pairs)) (aux (map (lambda (x) (gensym)) pairs))) `(let ,(map (lambda (var) `(,var #f)) vars) (let ,(map (lambda (a v) `(,a ,v)) aux vals) ,@(map (lambda (v e) `(set! ,v ,e)) vars vals) ,@body)))) Note, how simple this is, compared with the syntax-rules definition in R5RS ]|# ;;; (bindrec pat seq (where . fenders) .. xpr ....) ;;; ---------------------------------------------------- ;;; recursive version of bind (define-syntax bindrec (ir-macro-transformer (lambda (form inject compare?) (let ((pat (cadr form)) (seq (caddr form)) (xpr (cadddr form)) (xprs (cddddr form))) (let ((aux (map* gensym pat))) `(let ,(flatten-map* (lambda (v) `(,v #f)) pat) (dbind ,aux ,seq ,@(flatten-map* (lambda (x y) `(set! ,x ,y)) pat aux) (if ,(and (pair? xpr) (compare? (car xpr) 'where)) (if (and ,@(cdr xpr)) (begin ,@xprs) (signal (bind-exception 'bindrec "fenders not passed" ',(cdr xpr)))) (begin ,xpr ,@xprs))))))))) #|[ Now the implementation of a nested version of let, named and unnamed, is easy: Simply combine bind and bind*. For example (bind-let ( (((x y) z) '((1 2) 3)) (u (+ 2 2)) ((v w) '(5 6)) ) (list x y z u v w)) -> '(1 2 3 4 5 6) (bind-let loop (((a b) '(5 0))) (if (zero? a) (list a b) (loop (list (sub1 a) (add1 b))))) -> '(0 5) ]|# ;;; (bind-let loop .. ((pat seq) ...) xpr . xprs) ;;; --------------------------------------------- ;;; nested version of let, named and unnamed (define-syntax bind-let (syntax-rules () ((_ () xpr . xprs) (begin xpr . xprs)) ((_ ((pat0 seq0) (pat1 seq1) ...) xpr . xprs) (bind (pat0 pat1 ...) (list seq0 seq1 ...) xpr . xprs)) ((_ loop () xpr . xprs) (let loop () xpr . xprs)) ((_ loop ((pat0 seq0) ...) xpr . xprs) (bind* loop (pat0 ...) (list seq0 ...) xpr . xprs)))) #|[ The sequential version of bind-let should work as follows (bind-let* ( (((x y) z) '((1 2) 3)) (u (+ 1 2 x)) ((v w) (list (+ z 2) 6)) ) (list x y z u v w)) -> '(1 2 3 4 5 6) ]|# ;;; (bind-let* ((pat seq) ...) xpr . xprs) ;;; -------------------------------------- ;;; sequential version of bind-let (define-syntax bind-let* (syntax-rules () ((_ () xpr . xprs) (let () xpr . xprs)) ((_ ((pat seq) . pairs) xpr . xprs) (bind pat seq (bind-let* pairs xpr . xprs))))) #|[ The recursive version of bind-let works as follows (bind-letrec ( ((o? (e?)) (list (lambda (m) (if (zero? m) #f (e? (- m 1)))) (vector (lambda (n) (if (zero? n) #t (o? (- n 1))))))) ) (list (o? 95) (e? 95))) -> '(#t #f) ]|# ;;; (bind-letrec ((pat seq) ...) xpr . xprs) ;;; ---------------------------------------- ;;; recursive version of bind-let (define-syntax-rule (bind-letrec ((pat seq) ...) xpr . xprs) (bindrec (pat ...) (list seq ...) xpr . xprs)) #|[ The following macro does more or less the same what the match macro from the matchable package does, for example (bind-case '(1 (2 3)) ((x y) (where (list? y)) (list x y)) ((x (y . z)) (list x y z)) ((x (y z)) (list x y z))) ;-> '(1 2 (3)) or, to give a more realistic example, mapping: (define (my-map fn lst) (bind-case lst (() '()) ((x . xs) (cons (fn x) (my-map fn xs))))) ]|# ;;; (bind-case seq (pat (where . fenders) .. xpr . xprs) ....) ;;; ---------------------------------------------------------- ;;; Checks if seq matches pattern pat [satisfying fenders] .... ;;; in sequence, binds the pattern variables of the first matching ;;; pattern to corresponding subexpressions of seq and executes ;;; corresponding body xpr . xprs (define-syntax bind-case (syntax-rules (where) ((_ seq (pat (where . fenders) xpr . xprs) . clauses) (condition-case (bind pat seq (where . fenders) xpr . xprs) ((exn bind) (bind-case seq . clauses)))) ((_ seq (pat xpr . xprs) . clauses) (condition-case (bind pat seq xpr . xprs) ((exn bind) (bind-case seq . clauses)))) ((_ seq) (signal (bind-exception 'bind-case "no rule matches" seq))) )) #|[ The next two macros combine lambda and bind-case and do more or less the same as match-lambda and match-lambda* in the matchable package. The first destructures one argument, the second a list of arguments. Here is an example together with its result: ((bind-case-lambda ((a (b . c) . d) (list a b c d)) ((e . f) (where (zero? e)) e) ((e . f) (list e f))) '(1 2 3 4 5)) -> '(1 (2 3 4 5)) ((bind-case-lambda* (((a (b . c) . d) (e . f)) (list a b c d e f))) '(1 #(20 30 40) 2 3) '(4 5 6)) -> '(1 20 #(30 40) (2 3) 4 (5 6)) ]|# ;;; (bind-case-lambda (pat (where . fenders) .. xpr . xprs) ....) ;;; ------------------------------------------------------------- ;;; combination of lambda and bind-case, one pattern argument (define-syntax bind-case-lambda (syntax-rules (where) ((_ (pat (where . fenders) xpr . xprs)) (lambda (x) (bind pat x (where . fenders) xpr . xprs))) ((_ (pat xpr . xprs)) (lambda (x) (bind pat x xpr . xprs))) ((_ clause . clauses) (lambda (x) (bind-case x clause . clauses))))) ;;; (bind-case-lambda* (pat (where . fenders) .. xpr . xprs) ....) ;;; -------------------------------------------------------------- ;;; combination of lambda and bind-case, multiple pattern arguments (define-syntax bind-case-lambda* (syntax-rules (where) ((_ (pat (where . fenders) xpr . xprs)) (lambda x (bind pat x (where . fenders) xpr . xprs))) ((_ (pat xpr . xprs)) (lambda x (bind pat x xpr . xprs))) ((_ clause . clauses) (lambda x (bind-case x clause . clauses))))) ;;; (bind/cc cc xpr ....) ;;; --------------------- ;;; captures the current continuation, binds it to cc and executes ;;; xpr .... in this context (define-syntax-rule (bind/cc cc xpr . xprs) (call-with-current-continuation (lambda (cc) xpr . xprs))) #|[ Now we'll use macro-helpers and binding-macros to implement macros, which implement macros. The first, macro-rules, is a low-level version of syntax-rules. It is as convenient as the latter, but much more powerfull. For example, it can use injected symbols, do some of its work at compile-time, use local functions at compile-time and what have you. Contrary to syntax-rules the templates usually evaluate to quasiquoted expressions. ]|# ;;; (macro-rules sym ... (key ...) ;;; (pat tpl) ....) ;;; ------------------------------ ;;; where sym ... are injected non-hygienig symbols, key ... are ;;; additional keywords, pat .... are nested lambda-lists without ;;; spezial meaning of ellipses and tpl .... evaluate to ;;; quasiquoted templates. (define-syntax macro-rules (ir-macro-transformer (lambda (f i c?) ;; injections is list of injected syms, tail starts with keyword-list (receive (tail injections) (let loop ((tail (cdr f)) (injections '())) (if (list? (car tail)) ; keyword list (values tail injections) (loop (cdr tail) (cons (car tail) injections)))) (let ((keywords (car tail)) (rules (cdr tail)) (inject-sym (lambda (h) `(,h (inject ',h))))) (if (null? rules) `(signal (bind-exception 'macro-rules "no rule matches")) (let ( (once? (lambda (x) (and (pair? x) (c? (car x) 'once)))) (extract-keywords (lambda (r) (extract (lambda (y) (memq y keywords)) r))) (process-injections (lambda (binds) (if (null? injections) binds `(let ,(map inject-sym injections) ,binds)))) ) (let ( (process-keywords (lambda (r) ;; doesn't work whith where clauses ;`(,(car r) ; (where ,@(map (lambda (p s) `(compare? ,p ,s)) ; (extract-keywords (cddar r)) ; (map (lambda (x) `',x) ; (extract-keywords (cddar r))))) ; ,@(cdr r)))) (let* ((kws (extract-keywords (cddar r))) ;; compare? keywords with its names (keys (map (lambda (p s) `(compare? ,p ,s)) kws (map (lambda (x) `',x) kws))) ;; add keyword-clauses to where-clauses (wheres (if (c? (caadr r) 'where) (append keys (cdadr r)) keys))) ;; replace first item in template `(,(car r) (where ,@wheres) ,@(if (null? (cddr r)) (cdr r) (cddr r)))))) (process-onces (lambda (r) (let ((args (cdar r))) (if (found? once? args) (let ( (osyms (map cadr (collect* once? args))) (vars (replace* once? cadr args)) ) `((_ ,@vars) (once-only ,osyms ,@(cdr r)))) `((_ ,@args) ,@(cdr r)))))) (process-wrapper (lambda (binds) `(ir-macro-transformer (lambda (form inject compare?) ,(process-injections binds))))) ) (if (null? keywords) (process-wrapper `(bind-case form ,@(map process-onces rules))) (process-wrapper `(bind-case form ,@(map process-keywords (map process-onces rules))))))))))))) ;;; (define-macro (name . args) ;;; (inject sym ...) .. ;;; (keywords key ...) .. ;;; xpr ....) ;;; --------------------------- (define-syntax define-macro (syntax-rules (inject keywords macro-rules) ;; without injections ((_ name (macro-rules (key ...) xpr . xprs)) (define-syntax name (macro-rules (key ...) xpr . xprs))) ;; with injections ((_ name (macro-rules syms keys xpr . xprs)) (define-syntax name (macro-rules syms keys xpr . xprs))) ((_ (name . args) (inject sym ...) (keywords key ...) xpr . xprs) (define-syntax name (macro-rules sym ... (key ...) ((_ . args) xpr . xprs)))) ((_ (name . args) (keywords key ...) (inject sym ...) xpr . xprs) (define-syntax name (macro-rules sym ... (key ...) ((_ . args) xpr . xprs)))) ((_ (name . args) (inject sym ...) xpr . xprs) (define-syntax name (macro-rules sym ... () ((_ . args) xpr . xprs)))) ((_ (name . args) (keywords key ...) xpr . xprs) (define-syntax name (macro-rules (key ...) ((_ . args) xpr . xprs)))) ((_ (name . args) xpr . xprs) (define-syntax name (macro-rules () ((_ . args) xpr . xprs)))))) ;;; (define-er-macro (name . args) ;;; (rename-prefix pre) ;;; ;;; (keywords key ...) .. ;;; xpr ....) ;;; ------------------------------ (define-syntax define-er-macro (ir-macro-transformer (lambda (f i c?) (let ((code (cadr f)) (body (cddr f)) (once? (lambda (x) (and (pair? x) (c? (car x) 'once)))) (pre (rename-prefix))) (let ( (name (car code)) (args (cdr code)) (keywords? (c? (caar body) 'keywords)) ) (let ( (process-renames (lambda (b) (map (lambda (s) `(,s (rename ',(strip-prefix pre (i s))))) (extract (prefixed-with? pre) b)))) (process-keywords (lambda (vs ks) (if keywords? `(and ,@(map (lambda (x y) `(compare? ,x ,y)) (extract (lambda (a) (memq a ks)) (cdr vs)) (map (lambda (b) `',b) (extract (lambda (a) (memq a ks)) (cdr vs))))) #t))) (process-wrapper (lambda (binds) `(define-syntax ,name (er-macro-transformer (lambda (form rename compare?) (condition-case ,binds ((exn bind) (signal (bind-exception 'define-er-macro "no match"))))))))) ) (let ((keys (if keywords? (cdar body) '())) (body (if keywords? (cdr body) body))) (if (found? once? args) (let ((osyms (map cadr (collect* once? args))) (vars (replace* once? cadr args))) (process-wrapper `(dbind ,vars (cdr form) ,(process-keywords vars keys) (let ,(process-renames body) (once-only ,osyms ,@body))))) (process-wrapper `(dbind ,args (cdr form) ,(process-keywords args keys) (let ,(process-renames body) ,@body))))))))))) ;;; (letrec-er-macro ((macro-code tpl) ...) . body) ;;; ----------------------------------------------- ;;; defines local macros by binding recursively macro-codes to templates ;;; and evaluating body in this context. (define-syntax letrec-er-macro (er-macro-transformer (lambda (f r c?) (let ((binds (cadr f)) (body (cddr f)) (%letrec-syntax (r 'letrec-syntax))) `(,%letrec-syntax ,(map (lambda (m) `(,(cadr m) ,(caddr m))) (map (lambda (b) (expand `(define-er-macro ,@b))) binds)) ,@body))))) ;;; (let-er-macro ((macro-code tpl) ...) . body) ;;; ----------------------------------------- ;;; defines local macros by binding in parallel macro-codes to templates ;;; and evaluating body in this context. (define-syntax let-er-macro (er-macro-transformer (lambda (f r c?) (let ((binds (cadr f)) (body (cddr f)) (%let-syntax (r 'let-syntax))) `(,%let-syntax ,(map (lambda (m) `(,(cadr m) ,(caddr m))) (map (lambda (b) (expand `(define-er-macro ,@b))) binds)) ,@body))))) ) ; module bindings