
Open ClientTM

Client-Library/C Reference Manual

Open Client Release 10.0

Document ID: 32840-01-1000-04

Change Level: 1

Last Revised: August 5, 1994

Principal authorship: Pegler Swift, Stacia Sambar

Contributing authorship: Mike Allen, Otto Lind

Document ID: 32840-01-1000

This publication pertains to Open Client Release 10.0 of the SYBASE database
management software and to any subsequent release until otherwise indicated in
new editions or technical notes. Information in this document is subject to change
without notice. The software described herein is furnished under a license
agreement, and it may be used or copied only in accordance with the terms of the
agreement.

Document Orders

To order additional documents, U.S. and Canadian customers should call
Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer
Fulfillment via the fax number. All other international customers should contact
their Sybase subsidiary or local distributor.

Upgrades are provided only at regularly scheduled software release dates.

©Copyright Sybase, Inc., 1989, 1994. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical or otherwise,
without prior written permission of Sybase, Inc.

Sybase Trademarks

SYBASE, the SYBASE logo, APT-FORMS, Data Workbench, DBA Companion,
Deft, GainExposure, GainInsight, GainMomentum, SA Companion, SQL Debug,
SQL Solutions, SQR, Transact-SQL, and VQL are registered trademarks of
Sybase, Inc. Adaptable Windowing Environment, ADA Workbench, Application
Manager, Applications from Models, APT-Build, APT-Edit, APT-Execute,
APT-Library, APT-Translator, APT Workbench, Build Momentum, Camelot,
Client/Server Architecture for the Online Enterprise, Client/Server for the Real
World, Configurator, Connection Manager, Database Analyzer, DBA Companion
Application Manager, DBA Companion Resource Manager, DB-Library, Deft
Analyst, Deft Designer, Deft Educational, Deft Professional, Deft Trial, Developers
Workbench, Easy SQR, Embedded SQL, Enterprise Builder, Enterprise
Client/Server, Enterprise CONNECT, Enterprise Manager, Enterprise Meta
Server, Enterprise Modeler, Enterprise Momentum, Gain, Gateway Manager,
Intermedia Server, MAP, Maintenance Express, MethodSet, Movedb, Navigation
Server, Net-Gateway, Net-Library, Object Momentum, OmniSQL Access Module,
OmniSQL Gateway, OmniSQL Server, OmniSQL Toolkit, Open Client, Open
Client/Server Interfaces, Open Gateway, Open Server, Open Solutions,
Partnerships That Work, PC APT-Execute, PC DB-Net, PC Net Library, PostDoc,

Replication Server, Replication Server Manager, Report-Execute, Report
Workbench, Resource Manager, RW-Display Lib, RW-Library, Secure SQL Server,
Secure SQL Toolset, SKILS, SQL Code Checker, SQL Edit, SQL Edit/TPU, SQL
Monitor, SQL Server, SQL Server/CFT, SQL Server/DBM, SQL Station, SQL
Toolset, SQR Developers Kit, SQR Execute, SQR Toolset, SQR Workbench, STEP,
SYBASE Client/Server Interfaces, SYBASE Gateways, SYBASE Intermedia, Sybase
Momentum, SYBASE SQL Lifecycle, Sybase Synergy Program, SYBASE Virtual
Server Architecture, SYBASE User Workbench, SyBooks, System 10, Tabular Data
Stream, The Enterprise Client/Server Company, The Online Information Center,
and XA-Library are trademarks of Sybase, Inc.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions set forth
in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in
FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608

Client-Library/C Reference Manual v

Table of Contents

 Preface
Audience . xxi
How to Use This Book . xxi
Related Documents. xxii

Other Sources of Information . xxii
Conventions . xxiii
Code Fragments . xxiii
If You Need Help . xxiv

On-Line Help . xxiv
Technical Support . xxiv

1. Introducing Client-Library
Client/Server Architecture . 1-1

Types of Clients . 1-2
Types of Servers . 1-2

The Open Client and Open Server Products . 1-4
SYBASE Open Client . 1-4
SYBASE Open Server . 1-4
Application Calls to Libraries . 1-5
The Open Client Libraries . 1-5
What Is in Client-Library? . 1-6

Client-Library is a Generic Interface . 1-6
Comparing the Library Approach to Embedded SQL 1-6

Using Client-Library . 1-7
Basic Control Structures . 1-7
Steps in a Simple Program. 1-9

A Simple Example Program . 1-9
Notes on the Example Program . 1-15

Setting Up the Client-Library Programming Environment. 1-15
Installing Message Callback Routines . 1-15
Connecting to a Server . 1-16
Sending a Command to the Server. 1-16
Processing the Results of the Command. 1-16
Finishing Up. 1-17

vi Table of Contents

Open Client Release 10.0

More Advanced Programs . 1-18

2. Topics
List of Topics. 2-1
Asynchronous Programming . 2-3

Learning about Completions. 2-3
Asynchronous Routines . 2-3
Client-Library’s Interrupt-Level Memory Requirements 2-4
Layered Applications . 2-5

What’s In the Layers?. 2-5
Using ct_wakeup and CS_DISABLE_POLL . 2-5
A Brief Example . 2-6

Browse Mode. 2-8
Implementing Browse Mode. 2-9
Browse-mode Conditions . 2-10

Callbacks . 2-11
What Are Callbacks?. 2-11
When Are Callbacks Called?. 2-11
Types of Callbacks. 2-12
Callbacks Are Not Universally Implemented . 2-13
Installing a Callback Routine . 2-13
When a Callback Event Occurs. 2-14
Retrieving and Replacing Callback Routines . 2-14
Defining Callback Routines. 2-15
Client Message Callbacks. 2-16

Defining a Client Message Callback . 2-16
Client Message Callback Example. 2-18

Completion Callbacks . 2-19
Defining a Completion Callback . 2-19
Completion Callback Example. 2-21

Encryption Callbacks . 2-22
Defining an Encryption Callback. 2-23

Negotiation Callbacks . 2-24
Trusted-User Security Handshakes. 2-24
Challenge/Response Security Handshakes . 2-24
Defining a Negotiation Callback . 2-24

Notification Callbacks . 2-27
Defining a Notification Callback . 2-27

Server Message Callbacks . 2-28
Defining a Server Message Callback. 2-29
Server Message Callback Example . 2-30

Client-Library/C Reference Manual vii

Open Client Release 10.0

Signal Callbacks. 2-31
Defining a Signal Callback . 2-31
Installing a Signal Callback. 2-31

Capabilities . 2-33
What are Capabilities Good For? . 2-33
Types of Capabilities. 2-33
Setting and Retrieving Capabilities . 2-33

Setting and Retrieving Multiple Capabilities . 2-34
Client-Library Messages. 2-35

What the Bytes Represent . 2-35
Decoding a Message Number. 2-35
Message Severities . 2-36

Commands . 2-38
Sending a Command to a Server . 2-38
Deciding Which Type of Command to Use . 2-39
ct_command. 2-41
ct_cursor . 2-41
ct_dynamic . 2-41

CS_BROWSEDESC Structure. 2-43
CS_CLIENTMSG Structure . 2-45
CS_DATAFMT Structure . 2-49
CS_IODESC Structure. 2-54
CS_SERVERMSG Structure . 2-56
Cursors . 2-59

Language Cursors . 2-59
Declaring Language Cursors . 2-59
Regular Row Result Sets . 2-60
Fetching From Regular Row Result Sets . 2-60

Client-Library Cursors . 2-61
Declaring Client-Library Cursors . 2-61
Cursor Result Sets. 2-61
Fetching From Cursor Result Sets . 2-62

Language Cursor and Client-Library Cursor Interaction 2-62
Where to Go for More Information . 2-62

Dynamic SQL. 2-63
What is Dynamic SQL?. 2-63
Limitations of Dynamic SQL. 2-63

Performance . 2-64
ANSI Cursor Restriction . 2-64
SQL Server Restrictions . 2-64

Dynamic SQL Implementation. 2-65

viii Table of Contents

Open Client Release 10.0

Execute Immediate. 2-65
Prepare and Execute. 2-65

Execute Immediate . 2-66
Prepare and Execute . 2-66

Preparing a Statement . 2-67
Getting a Description of Prepared Statement Input 2-68
Getting a Description of Prepared Statement Output 2-69
Executing a Prepared Statement . 2-70
Declaring and Opening a Cursor on a Prepared Statement 2-71
Processing Results . 2-72
De-allocating a Prepared Statement . 2-72

Alternatives to Dynamic SQL . 2-73
Error and Message Handling . 2-74

Two Methods of Handling Messages . 2-74
Using Callbacks to Handle Messages . 2-75
In-Line Message Handling . 2-76
Client-Library’s Message Structures . 2-76
The CS_EXTRA_INF Property . 2-77
Sequencing Long Messages. 2-77

Message Structure Fields for Sequenced Messages 2-78
Sequenced Messages and Extended Error Data 2-79
Sequenced Messages and ct_diag . 2-79

Extended Error Data . 2-79
What’s Extended Error Data Good For?. 2-79
How Can an Application Tell if Extended Error Data is Available? . 2-80
Server Message Callbacks and Extended Error Data 2-80
In-Line Error Handling and Extended Error Data 2-81

Server Transaction States . 2-81
Retrieving Transaction States in Main-Line Code. 2-82
Retrieving Transaction States in a Server Message Callback 2-82

Header Files . 2-83
International Support . 2-84

When Does an Application Need to Use a CS_LOCALE?. 2-84
Using a CS_LOCALE Structure . 2-85

Context-Level Localization. 2-85
Connection-Level Localization . 2-86
Data-Element-Level Localization . 2-86

Where Does Client-Library Look for Localization Information? 2-87
The Locales File . 2-87

Locales File Entries. 2-87
Predefined Locale Names . 2-88

Client-Library/C Reference Manual ix

Open Client Release 10.0

cs_locale and the Locales File . 2-88
Logical Sequence of Calls . 2-89

Client-Library State Machines. 2-89
Command Level Sequence of Calls . 2-89

Commands State Table . 2-90
Initiated Commands State Table . 2-90
Result Types State Table . 2-91
Summary . 2-92

Command States . 2-92
Command-level Routines . 2-94
Callable Routines in Each Command State . 2-95

Initiated Commands . 2-104
Initiated Command Routines . 2-106
Callable Routines for Initiated Commands . 2-107

Result Types . 2-108
Result Type Processing Routines . 2-110
Callable Routines for Each Result Type . 2-110
Pending Results . 2-113

Message Commands and Results . 2-114
Message Commands. 2-114
Message Results. 2-114
Legal Message Ids . 2-114

Open Client Macros . 2-115
Decoding a Message Number. 2-115
Manipulating Bits in a CS_CAP_TYPE Structure 2-115
Using the sizeof Operator . 2-116

Options . 2-117
Symbolic Constants for Server Options . 2-117

Parameter Conventions . 2-123
NULL and Unused Parameters . 2-123

Pointer Parameters . 2-123
Non-Pointer Parameters . 2-123

Input Parameter Strings . 2-123
Output Parameter Strings . 2-124
Pointers to Basic Structures . 2-124
Item Numbers . 2-124
action, buffer, buflen, and outlen . 2-125

Properties . 2-128
Setting and Retrieving Properties. 2-128
Three Kinds of Context Properties . 2-128
Copying Login Properties . 2-129

x Table of Contents

Open Client Release 10.0

Summary of Properties. 2-130
About the Properties. 2-136

ANSI-Style Binds . 2-136
Application Name . 2-137
Asynchronous Notifications. 2-137
Bulk Copy Operations . 2-138
Character Set Conversion . 2-138
Communications Session Block . 2-138
Connection Status. 2-138
Cursor ID . 2-139
Cursor Name. 2-139
Cursor Rowcount . 2-140
Cursor Status . 2-140
Diagnostic Timeout Fail. 2-141
Disable Poll . 2-141
Extended Error Data Command Structure . 2-141
Endpoint Polling. 2-142
Expose Formats. 2-142
Extra Information . 2-143
Hidden Keys . 2-143
Host Name. 2-144
Locale Information . 2-144
Location of the Interfaces File. 2-145
Login Status. 2-145
Login Timeout. 2-145
Maximum Number of Connections . 2-146
Memory Pool. 2-146
Network I/O . 2-147
No Truncate . 2-148
No Interrupt . 2-149
Notification Parameters. 2-149
Packet Size . 2-149
Parent Structure . 2-149
Password . 2-149
Security Application-Defined. 2-150
Security Challenge . 2-150
Security Encryption . 2-150
Security Negotiation . 2-150
TDS Version . 2-151
Text and Image Limit . 2-152
Timeout . 2-152

Client-Library/C Reference Manual xi

Open Client Release 10.0

Transaction Name. 2-152
User Allocation Function . 2-153
User Free Function . 2-154
User Data . 2-154
User Name. 2-156
Version String for Client-Library . 2-156
Version of Client-Library. 2-156

Registered Procedures . 2-157
When Client-Library Receives a Notification. 2-158
Receiving Notifications Asynchronously . 2-159

Remote Procedure Calls . 2-160
Comparing RPCs and Execute Statements . 2-160
Servers Can Execute Remote Procedures . 2-161
Remote Procedure Call Routines . 2-161
Remote Procedure Call Results. 2-161
Return Parameters. 2-162

Processing Return Parameters . 2-162
Return Status . 2-162

Processing an RPC Command Return Status 2-163
Results. 2-164

Types of Results . 2-164
Regular Row Results . 2-164
Cursor Row Results . 2-165
Parameter Results. 2-165
Stored Procedure Return Status Results . 2-165
Compute Row Results . 2-166
Message Results . 2-166
Describe Results . 2-166
Format Results . 2-166

Program Structure for Processing Results. 2-167
Retrieving an Item’s Value. 2-171

Sample Programs . 2-172
Client-Library Routines in Sample Programs . 2-173

Security Features . 2-175
Security Handshakes . 2-175

Trusted-User Security Handshakes. 2-175
Challenge/Response Security Handshakes . 2-176
Encrypted Password Security Handshakes. 2-177

Security Datatypes . 2-178
Secure Bulk Copies . 2-178

xii Table of Contents

Open Client Release 10.0

Server Restrictions . 2-179
Open Server Restrictions . 2-179
SQL Server Restrictions . 2-180
What Client/Server Features are Supported? . 2-180

SQLCA Structure . 2-181
SQLCODE Structure . 2-183

Mapping Server Messages to SQLCODE . 2-183
Mapping Client-Library Messages to SQLCODE 2-183

SQLSTATE Structure. 2-184
Structures . 2-185

Hidden Structures . 2-185
Exposed Structures . 2-186

Text and Image . 2-188
Retrieving a Text or Image Column . 2-188

Using ct_get_data to Fetch Text and Image Values 2-188
Updating a Text or Image Column. 2-190
Populating a Table Containing Text or Image Columns. 2-191

Smaller Text and Image Values . 2-192
Larger Text and Image Values . 2-192

Types . 2-193
Datatype Summary. 2-193
Routines That Manipulate Datatypes . 2-194
Open Client Datatypes . 2-195

Binary Types . 2-195
Bit Types . 2-196
Character Types . 2-196
Datetime Types . 2-197
Numeric Types . 2-198
Money Types . 2-199
Security Types . 2-200
Text and Image Types . 2-200

Open Client User-Defined Datatypes . 2-200

3. Routines
List of Routines. 3-3
ct_bind. 3-7

Clearing Bindings. 3-12
Array Binding . 3-13

Client-Library/C Reference Manual xiii

Open Client Release 10.0

ct_br_column . 3-16
ct_br_table . 3-18
ct_callback . 3-21
ct_cancel . 3-26

Canceling a Command . 3-28
Canceling Current Results . 3-30

ct_capability . 3-31
CS_CAP_REQUEST Capabilities. 3-32
CS_CAP_RESPONSE Capabilities . 3-34
Setting and Retrieving Multiple Capabilities . 3-37

ct_close . 3-39
Default Close Behavior . 3-41
CS_FORCE_CLOSE Behavior . 3-41

ct_cmd_alloc . 3-43
ct_cmd_drop . 3-45
ct_cmd_props . 3-47
ct_command . 3-51

Language Commands . 3-54
Message Commands . 3-55
Package Commands. 3-55
RPC (remote procedure call) Commands. 3-56
Send-Data Commands. 3-56
Send-Bulk-Data Commands. 3-56

ct_compute_info . 3-58
The Bylist for a Compute Row . 3-60
The Select-List Column ID for a Compute Column 3-60
The Compute ID for this Compute Row . 3-60
The Aggregate Operator for a Particular Compute Row Column. . . 3-61

ct_con_alloc . 3-63
ct_con_drop . 3-66
ct_con_props . 3-68
ct_config . 3-77
ct_connect. 3-83

Multiple QUERY Entries in an Interfaces File . 3-85
ct_cursor . 3-89

Batching Client-Library Cursor Commands . 3-92
Client-Library Cursor Close . 3-92
Client-Library Cursor De-allocate . 3-93
Client-Library Cursor Declare . 3-93
Client-Library Cursor Delete . 3-94
Client-Library Cursor Open . 3-94

xiv Table of Contents

Open Client Release 10.0

Dynamic SQL Cursor Option. 3-95
Client-Library Cursor Rows . 3-96
Client-Library Cursor Update . 3-96

ct_data_info. 3-100
ct_debug . 3-104
ct_describe . 3-109
ct_diag . 3-114

Initializing In-Line Error Handling . 3-118
Clearing Messages . 3-119
Retrieving Messages . 3-119
Limiting Messages . 3-119
Retrieving the Number of Messages. 3-120
Getting the CS_COMMAND for Extended Error Data 3-120
Sequenced Messages and ct_diag. 3-121

ct_dynamic . 3-122
About Prepared Statements . 3-124
Preparing a Statement . 3-125
Declaring a Cursor on a Prepared Statement 3-125
Setting Options . 3-125
Getting a Description of Prepared Statement Input 3-125
Getting a Description of Prepared Statement Output 3-125
Executing a Prepared Statement . 3-126
Executing a Literal Statement. 3-126
De-allocating a Prepared Statement . 3-126

ct_dyndesc . 3-127
Allocating a Descriptor . 3-129
De-allocating a Descriptor . 3-130
Retrieving a Parameter or Result Item’s Attributes 3-130
Retrieving the Number of Parameters or Columns 3-133
Setting a Parameter’s Attributes . 3-133
Setting the Number of Parameters or Columns 3-135
Associating a Descriptor with a Statement or Command Structure 3-135

ct_exit . 3-137
ct_fetch . 3-140

Fetching Regular Rows and Cursor Rows . 3-144
Fetching Return Parameters . 3-144
Fetching a Return Status . 3-144
Fetching Compute Rows. 3-145

Client-Library/C Reference Manual xv

Open Client Release 10.0

ct_get_data . 3-148
ct_getformat . 3-154
ct_getloginfo . 3-156

TDS Pass-Through . 3-157
Copying Login Properties. 3-157

ct_init . 3-158
ct_keydata . 3-162
ct_labels . 3-165
ct_options . 3-168
ct_param . 3-174

Identifying Update Columns for a Cursor Declare Command 3-176
Defining Host Variable Formats . 3-177
Passing Input Parameter Values . 3-178

ct_poll . 3-185
ct_recvpassthru . 3-190
ct_remote_pwd . 3-192
ct_res_info . 3-195

Determining Whether Browse Mode Information is Available 3-197
Retrieving the Command Number for Current Results 3-197
Retrieving a Message ID . 3-199
Retrieving the Number of Compute Clauses 3-199
Retrieving the Number of Result Data Items 3-199
Retrieving the Number of Columns in an Order-By Clause. 3-199
Retrieving the Column ID’s of Order-By Columns 3-200
Retrieving the Number of Rows for the Current Command 3-200
Retrieving the Current Server Transaction State. 3-201

ct_results. 3-202
The ct_results Loop. 3-205
When are the Results of a Command Completely Processed?. 3-205
Canceling Results . 3-207
Special Kinds of Result Sets . 3-207
ct_results and Stored Procedures . 3-207

ct_send . 3-212
ct_send_data . 3-216
ct_sendpassthru . 3-222
ct_setloginfo . 3-224

TDS Pass-Through . 3-225
Copying Login Properties. 3-225

xvi Table of Contents

Open Client Release 10.0

ct_wakeup . 3-227

A. Glossary

 Index

Client-Library/C Reference Manual xvii

List of Tables

Table 2-1: Types of callbacks ..2-12
Table 2-2: Callbacks can call these Client-Library routines ...2-15
Table 2-3: Routines that a client message callback can call ...2-18
Table 2-4: Values for function (Completion Callback) ...2-20
Table 2-5: Values for inmsgid (Negotiation Callback) ...2-25
Table 2-6: Values for outmsgid (Negotiation Callback) ...2-25
Table 2-7: Routines that a notification callback can call...2-28
Table 2-8: Routines that a server message callback can call ..2-29
Table 2-9: Client-Library message severities ...2-36
Table 2-10: Client-Library routines that initiate commands..2-38
Table 2-11: Different Client-Library commands that accomplish the same tasks2-39
Table 2-12: Values for severity (CS_CLIENTMSG)...2-46
Table 2-13: Values for status (CS_CLIENTMSG) ...2-47
Table 2-14: Values for format (CS_DATAFMT)...2-51
Table 2-15: Meaning of maxlength (CS_DATAFMT)..2-51
Table 2-16: Values for status (CS_DATAFMT)..2-52
Table 2-17: Values for status (CS_SERVERMSG) ...2-58
Table 2-18: status values for sequenced messages...2-78
Table 2-19: Transaction states...2-81
Table 2-20: Command states ..2-92
Table 2-21: Callable routines at each command state...2-95
Table 2-22: Initiated command states ...2-105
Table 2-23: Callable routines for initiated commands..2-107
Table 2-24: Result types ..2-109
Table 2-25: Callable routines for each result type ... 2-111
Table 2-26: Symbolic constants for server options..2-117
Table 2-27: Interaction between action, buffer, buflen, and outlen parameters2-126
Table 2-28: Client-Library properties..2-130
Table 2-29: Bit values for the CS_CON_STATUS property..2-139
Table 2-30: Bit values for the CS_CUR_STATUS property ..2-140
Table 2-31: Values for CS_TDS_VERSION...2-151
Table 2-32: Client-Library sample programs and associated header files.............................2-172
Table 2-33: Client-Library routines in sample programs ...2-173
Table 2-34: Routines that manipulate hidden structures ...2-185
Table 2-35: Datatype summary..2-193
Table 3-1: Fields in the CS_DATAFMT structure (ct_bind) ..3-8
Table 3-2: Values for indicator (ct_bind)..3-10
Table 3-3: Return values (ct_bind) ..3-10

xviii List of Tables

Open Client Release 10.0

Table 3-4: Return values (ct_br_column)..3-16
Table 3-5: Values for type (ct_br_table) ...3-18
Table 3-6: Return values (ct_br_table) ..3-19
Table 3-7: Values for action (ct_callback) ..3-22
Table 3-8: Values for type (ct_callback)...3-22
Table 3-9: Return values (ct_callback)..3-23
Table 3-10: Values for type (ct_cancel)..3-27
Table 3-11: Return values (ct_cancel)...3-27
Table 3-12: Values for action (ct_capability)..3-31
Table 3-13: Values for type (ct_capability)...3-31
Table 3-14: Request capabilities ...3-32
Table 3-15: Response capabilities ..3-34
Table 3-16: Return values (ct_capability) ...3-36
Table 3-17: Values for option (ct_close) ..3-39
Table 3-18: Return values (ct_close) ..3-40
Table 3-19: Return values (ct_cmd_alloc)...3-43
Table 3-20: Return values (ct_cmd_drop)...3-45
Table 3-21: Values for action (ct_cmd_props) ...3-47
Table 3-22: Return values (ct_cmd_props) ...3-48
Table 3-23: Client-Library properties..3-49
Table 3-24: Values for option (ct_command) ...3-52
Table 3-25: Summary of parameters (ct_command) ...3-53
Table 3-26: Return values (ct_command) ...3-53
Table 3-27: Summary of parameters (ct_compute_info)...3-59
Table 3-28: Return values (ct_compute_info) ...3-59
Table 3-29: Aggregate operator types ...3-61
Table 3-30: Return values (ct_con_alloc) ...3-63
Table 3-31: Return values (ct_con_drop)..3-66
Table 3-32: Values for action (ct_con_props) ..3-68
Table 3-33: Return values (ct_con_props)..3-69
Table 3-34: Client-Library connection properties..3-70
Table 3-35: Values for action (ct_config) ...3-77
Table 3-36: Return values (ct_config) ...3-78
Table 3-37: Client-Library context properties ..3-79
Table 3-38: Return values (ct_connect) ..3-84
Table 3-39: Summary of parameters (ct_cursor) ..3-90
Table 3-40: Return values (ct_cursor)...3-91
Table 3-41: Values for action (ct_data_info) ..3-100
Table 3-42: Return values (ct_data_info) ..3-101
Table 3-43: Values for flag (ct_debug) ...3-105
Table 3-44: Summary of parameters (ct_debug)...3-106

Client-Library/C Reference Manual xix

Open Client Release 10.0

Table 3-45: Return values (ct_debug) ...3-106
Table 3-46: Fields in the CS_DATAFMT structure (ct_describe)..3-110
Table 3-47: Return values (ct_describe) ...3-112
Table 3-48: Values for type (ct_diag) ...3-114
Table 3-49: Summary of parameters (ct_diag) ..3-115
Table 3-50: Return values (ct_diag) ..3-117
Table 3-51: Summary of parameters (ct_dynamic) ...3-123
Table 3-52: Return values (ct_dynamic) ...3-123
Table 3-53: Values for operation (ct_dyndesc) ..3-127
Table 3-54: Values for indicator (ct_dyndesc) ...3-128
Table 3-55: Return values (ct_dyndesc) ...3-129
Table 3-56: Parameter values for CS_ALLOC operations..3-130
Table 3-57: Parameter values for CS_DEALLOC operations ..3-130
Table 3-58: Parameter values for CS_GETATTR operations..3-131
Table 3-59: CS_DATAFMT fields to set for CS_GETATTR operations...................................3-131
Table 3-60: CS_DATAFMT fields set during CS_GETATTR operations3-132
Table 3-61: Parameter values for CS_GETCNT operations ...3-133
Table 3-62: Parameter values for CS_SETATTR operations...3-134
Table 3-63: CS_DATAFMT fields for CS_SETATTR operations ..3-134
Table 3-64: Parameter values for CS_SETCNT operations ..3-135
Table 3-65: Parameter Values for CS_USE_DESC operations ...3-135
Table 3-66: Values for option (ct_exit) ...3-137
Table 3-67: Return values (ct_exit) ...3-137
Table 3-68: Return values (ct_fetch) ...3-141
Table 3-69: Return values (ct_get_data) ...3-149
Table 3-70: Return values (ct_getformat) ...3-155
Table 3-71: Return values (ct_getloginfo)...3-156
Table 3-72: Values for version (ct_init) ..3-158
Table 3-73: Return values (ct_init) ..3-158
Table 3-74: Values for action (ct_keydata)...3-162
Table 3-75: Return values (ct_keydata) ..3-163
Table 3-76: Values for action (ct_labels)..3-165
Table 3-77: Return values (ct_labels) ...3-166
Table 3-78: Values for action (ct_options) ...3-168
Table 3-79: Summary of parameters (ct_options)...3-170
Table 3-80: Return values (ct_options)...3-172
Table 3-81: Summary of parameters (ct_param)...3-175
Table 3-82: Return values (ct_param) ...3-175
Table 3-83: CS_DATAFMT fields for identifying update columns...3-177
Table 3-84: CS_DATAFMT fields for defining host variable formats.....................................3-177
Table 3-85: CS_DATAFMT fields for passing input parameter values3-179

xx List of Tables

Open Client Release 10.0

Table 3-86: Values for compid (ct_poll) ...3-186
Table 3-87: Summary of parameters (ct_poll)...3-187
Table 3-88: Return values (ct_poll) ...3-187
Table 3-89: Return values (ct_recvpassthru) ..3-190
Table 3-90: Values for action (ct_remote_pwd) ...3-192
Table 3-91: Return values (ct_remote_pwd) ...3-193
Table 3-92: Summary of parameters (ct_res_info)..3-196
Table 3-93: Return values (ct_res_info) ..3-197
Table 3-94: Values for *result_type (ct_results)...3-202
Table 3-95: Return values (ct_results) ..3-203
Table 3-96: Return values (ct_send) ...3-212
Table 3-97: Return values (ct_send_data) ..3-216
Table 3-98: Return values (ct_sendpassthru) ...3-222
Table 3-99: Return values (ct_setloginfo) ...3-224
Table 3-100: Values for function (ct_wakeup) ...3-228
Table 3-101: Return values (ct_wakeup)...3-229

Client-Library/C Reference Manual xxi

Preface

This document, the Open Client Client-Library/C Reference Manual,
contains reference information for the C version of Open Client Client-
LibraryTM.

Audience

The Client-Library Reference Manual is designed to serve as a reference
manual for programmers who are writing Client-Library applications.
It is written for application programmers familiar with the C
programming language.

How to Use This Book

When writing a Client-Library application, use the Client-Library
Reference Manual as a source of reference information.

Chapter 1, “Introducing Client-Library,” contains a brief introduction
to Client-Library.

Chapter 2, “Topics,” contains information on how to accomplish
specific programming tasks, such as using Client-Library routines to
read a text or image value from the server. This chapter also contains
information on Client-Library structures, options, error messages, and
conventions.

Chapter 3, “Routines,” contains specific information about each
Client-Library routine, such as what parameters the routine takes and
what it returns.

Although there is some introductory material about application
development in this manual, it is highly recommended that
applications programmers read the Client-Library Programmer’s Guide
before designing a Client-Library application.

xxii Preface

Related Documents Open Client Release 10.0

Related Documents

The Open Client/Server Installation Guide explains how to install Client-
Library.

The Client-Library Programmer’s Guide contains information on how to
design and implement Client-Library programs.

The Open Client and Open Server Common Libraries Reference Manual
contains reference information for:

• CS-Library

• Client-Library and Server-Library bulk copy routines

The Open Client/Server Supplement contains platform-specific material
for Open Client/Server products. This document includes
information about:

• Open Client compatibility with pre-10.0 server releases

• The interfaces file

• Compiling and linking an application

• The example programs that are included on-line with Open
Client/Server products

• Routines that have platform-specific behaviors

• Localization

Other Sources of Information

 SYBASE documents include a wide range of user guides and
reference manuals which describe all aspects of the SYBASE relational
database management system. Because application development can
draw on a number of different parts of the SYBASE system, you may
encounter most of the SYBASE document set at some time or another. A
few manuals, however, will prove to be particularly useful:

• The SQL Server Reference Manual describes the Transact-SQL
database language, which an application uses to create and
manipulate SYBASE SQL Server database objects.

• The Open Client DB-Library Reference Manual describes DB-
Library. Like Client-Library, DB-Library is a collection of
routines for use in writing client applications.

• The Open Server Server-Library Reference Manual contains reference
information for Open Server Server-Library, a collection of routines
for use in writing Open Server applications.

Client-Library/C Reference Manual xxiii

Open Client Release 10.0 Conventions

• The APT Workbench User’s Guide documents APT-Edit, used to
create forms and specify their processing, and APT-SQL, a
fourth-generation language for developing forms-based
applications.

• APT Workbench reference manuals include:

- The APT-Edit Reference Manual, which contains detailed
information about the forms editor

- The APT-SQL Reference Manual, which contains detailed
information on the APT-SQL language

- The APT-Library/C Reference Manual, which describes the library
of C routines that give an application access to APT-Edit forms

• The Data Workbench User’s Guide describes Data Workbench, a set
of tools that provide forms-based, interactive access to SQL Server.
Since Data Workbench uses the SYBASE forms run-time system, it
can serve as a valuable example of how a forms-based application
looks and feels.

Conventions

Client-Library routine syntax is shown in a bold, monospace font:

CS_RETCODE ct_init(context, version)

CS_CONTEXT *context;
CS_INT version;

Program text and computer output are shown in a monospace font:

ct_init(mycontext, CS_VERSION_100);

Structure names and symbolic constants are shown in small capital
letters:

CS_CONTEXT, CS_SYNC_IO

Routine names and Transact-SQL keywords are written in a narrow,
bold font:

ct_init, the select statement

Code Fragments

Code fragments in this book are taken from the on-line example
programs that are included with Client-Library.

xxiv Preface

If You Need Help Open Client Release 10.0

The example programs, and consequently the code fragments in this
book, use EX_*, Ex_*, and ex_ * #defines, variables, and routines.

These #defines, variables, and routines are part of the example
programs but not a part of Client-Library.

If You Need Help

Help is available for your SYBASE software in the form of
documentation, on-line help, and a Technical Support Center.

On-Line Help

If you have access to a 10.0 SQL Server, you can use sp_syntax, a SYBASE
system procedure, to retrieve the syntax of Client-Library routines.

For information on how to install sp_syntax, see the System
Administration Guide Supplement for your platform. For information on
how to run sp_syntax, see its manual page in Volume 2 of the SQL Server
Reference Manual.

Technical Support

Your company has designated someone with the authority to contact
Sybase Technical Support. If you cannot resolve a problem using the
information in the Sybase documentation, ask that person to contact
Sybase Technical Support for you.

Introduction

Client-Library/C Reference Manual 1-1

1. Introducing Client-Library

Client/Server Architecture

Client/server architecture divides the work of computing between
“clients” and “servers.”

Clients make requests of servers and process the results of those
requests. For example, a client application might request data from a
database server. Another client application might send a request to an
environmental control server to lower the temperature in a room.

Servers respond to requests by returning data or other information to
clients, or by taking some action. For example, a database server
returns tabular data and information about that data to clients, and an
electronic mail server directs incoming mail toward its final
destination.

Figure 1-1: Client/Server architecture

Client/server architecture has several advantages over traditional
program architectures:

• Application size and complexity can be significantly reduced,
because common services are handled in a single location, a server.
This simplifies client applications, reduces duplicate code, and
makes application maintenance easier.

client

client

request for data

results

request for data

results

request to take an action

server server

action

1

1-2 Introducing Client-Library

Client/Server Architecture Open Client Release 10.0

• Client/server architecture facilitates communication between
varied applications. Client applications that use dissimilar
communications protocols cannot communicate directly, but can
communicate through a server that “speaks” both protocols.

• Client/server architecture enables applications to be developed
with distinct components, which can be modified or replaced
without affecting other parts of the application.

Types of Clients

A client is any application that makes requests of a server. Clients
include:

• SQL Toolset products such as APT-Edit and Data Workbench

• Stand-alone utilities provided with SQL Server, such as isql and bcp

• Applications written using Open Client libraries

• Applications written using SYBASE Embedded SQL

Types of Servers

The SYBASE product line includes servers and tools for building
servers:

• SYBASE SQL Server is a database server. SQL Servers manage
information stored in one or more databases.

• SYBASE Open Server provides the tools and interfaces needed to
create a custom server, also called an “Open Server application.”

An Open Server application can be any type of server. For example, an
Open Server application can perform specialized calculations, provide
access to real time data, or interface with services such as electronic
mail. An Open Server application is created individually, using the
building blocks provided by Open Server Server-Library.

SQL Server and Open Server applications are similar in some ways:

• SQL Server and Open Server applications are both servers,
responding to client requests.

• Clients communicate with both SQL Server and Open Server
applications through Open Client products.

But they also differ:

Client-Library/C Reference Manual 1-3

Open Client Release 10.0 Client/Server Architecture

• An application programmer must create an Open Server
application, using Server-Library’s building blocks and supplying
custom code. SQL Server is complete and does not require custom
code.

• An Open Server application can be any kind of server, and can be
written to understand any language. SQL Server is a database
server, and understands only Transact-SQL.

• An Open Server application can communicate with “foreign”
applications and servers that are not based on SYBASE protocols, as
well as SYBASE applications and servers. SQL Server can
communicate directly only with SYBASE applications and servers,
although SQL Server can communicate with foreign applications
and servers by using an Open Server gateway application as an
intermediary.

The following diagram illustrates some of the different capabilities of
SQL Server and Open Server applications:

Figure 1-2: SQL Server and Open Server applications

client

request for data

results of request

SQL

Open

database

real-time data

electronic mail

Server

Server
application

Open
Server

application

request for data

results of request

request to send mail

results of request

1-4 Introducing Client-Library

The Open Client and Open Server Products Open Client Release 10.0

The Open Client and Open Server Products

Sybase provides two families of products to enable customers to write
client and server application programs. They are:

• SYBASE Open Client

• SYBASE Open Server

SYBASE Open Client

SYBASE Open Client provides customer applications, third-party
products, and other SYBASE products with the interfaces needed to
communicate with SQL Server and Open Server.

Open Client can be thought of as having two components,
programming interfaces and network services.

The programming interfaces component of Open Client is made up of
libraries designed for use in writing client applications: Client-Library,
DB-Library, and CS-Library. (Both Open Client and Open Server
include CS-Library, which contains utility routines that are useful to
both client and server applications.)

Open Client network services include Net-Library, which provides
support for specific network protocols, such as TCP/IP or DECnet.

SYBASE Open Server

SYBASE Open Server provides the tools and interfaces needed to
create custom servers.

Like Open Client, Open Server has a programming interfaces
component and a network services component.

The programming interfaces component of Open Server contains
Server-Library and CS-Library. (Both Open Client and Open Server
include CS-Library, which contains utility routines that are useful to
both client and server applications.)

Open Server network services are transparent.

Client-Library/C Reference Manual 1-5

Open Client Release 10.0 The Open Client and Open Server Products

Application Calls to Libraries

The following diagram illustrates the Open Client and Open Server
library calls that different types of applications might make. For
example, a client application might include calls to Client-Library and
CS-Library, while an application that acts as both client and server (for
example, a gateway application) might include calls to Client-Library,
CS-Library, and Server-Library:

Figure 1-3: Application calls to libraries

The Open Client Libraries

The libraries that make up Open Client programming interfaces are:

• DB-Library, a collection of routines for use in writing client
applications. DB-Library includes a bulk copy library and the two-
phase commit special library.

CS-Library

DB-Library

Client-Library Server-Library

Client
application

Gateway
application

Server
application

Open Client Open Server

1-6 Introducing Client-Library

The Open Client and Open Server Products Open Client Release 10.0

• Client-Library, a collection of routines for use in writing client
applications. Client-Library is a new library, designed to
accommodate cursors and other advanced features in the SYBASE
10.0 product line.

• CS-Library, a collection of utility routines that are useful to both
client and server applications. All Client-Library applications will
include at least one call to CS-Library, because Client-Library
routines use a structure which is allocated in CS-Library.

What Is in Client-Library?

Client-Library includes routines that send commands to a server and
routines that process the results of those commands. Other routines set
application properties, handle error conditions, and provide a variety
of information about an application’s interaction with a server.

Client-Library also contains a header file, ctpublic.h, that defines
structures, types, and values used by Client-Library routines.

Client-Library is a Generic Interface

Client-Library is a generic interface. Through Open Server and
gateway applications, Client-Library applications can run against
foreign applications and servers as well as SQL Server.

Because it is generic, Client-Library does not enforce or reflect any
particular server’s restrictions. For example, Client-Library allows text
and image stored procedure parameters, but SQL Server does not.

When writing a Client-Library application, keep the application’s
ultimate target server in mind. If you are unsure about what is legal on
a server and what is not, consult your server documentation.

An application can call ct_capability to find out what capabilities a
particular client/server connection supports.

Comparing the Library Approach to Embedded SQL

Either an Open Client library application or an Embedded SQL
application can be used to send SQL commands to SQL Server.

An Embedded SQL application includes SQL commands in-line. The
host language precompiler processes the commands into calls to Open
Client libraries. All SYBASE 10.0 precompilers use a run-time library
composed solely of documented Client-Library and CS-Library calls.

Client-Library/C Reference Manual 1-7

Open Client Release 10.0 Using Client-Library

In a sense, then, the precompiler transforms an Embedded SQL
application into an Open Client library application.

An Open Client library application sends SQL commands through
library routines, and does not require a precompiler.

Generally, an Embedded SQL application is easier to write and debug,
but a library application can take fuller advantage of the flexibility and
power of Open Client routines.

Using Client-Library

An application programmer writes a Client-Library program, using
calls to Client-Library and CS-Library routines to set up structures,
connect to servers, send commands, process results, and clean up. A
Client-Library program is compiled and run in the same way as any
other C language program.

Basic Control Structures

In order to send commands to a server, a Client-Library application
must allocate three types of structures:

• A CS_CONTEXT structure, which defines a particular application
“context”, or operating environment

• A CS_CONNECTION structure, which defines a particular
client/server connection

• A CS_COMMAND structure, which defines a “command space” in
which commands are sent to a server

An application allocates these structures by calling the CS-Library and
Client-Library routines cs_ctx_alloc, ct_con_alloc, and ct_cmd_alloc.

1-8 Introducing Client-Library

Using Client-Library Open Client Release 10.0

The general relationship between the three basic control structures is
illustrated by the following diagram:

Figure 1-1: Relationship of control structures

Through these structures, an application sets up its environment,
connects to servers, sends commands, and processes results.

For more information about these control structures, see Structures in
Chapter 2, “Topics,” or the Client-Library Programmer’s Guide.

Server

Server

Context Structure

Connection

Command
Structure

Context Structure

Connection

Connection

commands

results

Client Application

Structure

Structure

Structure

Command
Structure

commands

results

Command
Structure

commands

results

Command
Structure

commands

results

Client-Library/C Reference Manual 1-9

Open Client Release 10.0 A Simple Example Program

Steps in a Simple Program

On most platforms, a simple Client-Library program involves the
following steps:

1. Set up the Client-Library programming environment.

2. Define error handling. Most applications will use callback
routines to handle Client-Library and server error and
informational messages. Some applications, however, will handle
messages in-line. For a discussion of error and message handling,
see Error and Message Handling in Chapter 2, “Topics.”

3. Connect to a server.

4. Send a command to the server.

5. Process the results of the command.

6. Finish up.

The example program in the following section demonstrates these
steps.

A Simple Example Program

The following example demonstrates the basic framework of a Client-
Library application. The program follows the steps outlined in the
previous section, sending a language command to a SQL Server and
processing the results of the command. In this case, the language
command is a Transact-SQL select command.

For brevity’s sake, this program does not include code for the message
callback routines that handle Client-Library and server messages.
However, message callback routines are included with the on-line
example programs.

/*
** Language Query Example Program.
*/

#include <stdio.h>
#include <ctpublic.h>

/*
** Define a global context structure to use
*/
CS_CONTEXT *context;

#define ERROR_EXIT (-1)

1-10 Introducing Client-Library

A Simple Example Program Open Client Release 10.0

#define MAXCOLUMNS 2
#define MAXSTRING 40

extern int print_data();

/* Client message and server message callback routines: */
CS_RETCODE clientmsg_callback();
CS_RETCODE servermsg_callback();
void error();

/*
** Main entry point for the program.
*/
main(argc, argv)
int argc;
char **argv;
{

CS_CONNECTION *connection; /* Connection structure. */
CS_COMMAND *cmd; /* Command structure. */

/* Data format structures for column descriptions: */
CS_DATAFMT columns[MAXCOLUMNS];

CS_INT datalength[MAXCOLUMNS];
CS_SMALLINT indicator[MAXCOLUMNS];
CS_INT count;
CS_RETCODE ret, res_type;
CS_CHAR name[MAXSTRING];
CS_CHAR city[MAXSTRING];

/*
** Get a context structure to use.
*/
cs_ctx_alloc(CS_VERSION_100, &context)

/*
** Initialize Open Client.
*/
ct_init(context, CS_VERSION_100);

/*
** Install message callback routines.
*/
ct_callback(context, NULL, CS_SET, CS_CLIENTMSG_CB,

clientmsg_callback);

ct_callback(context, NULL, CS_SET, CS_SERVERMSG_CB,
servermsg_callback);

Client-Library/C Reference Manual 1-11

Open Client Release 10.0 A Simple Example Program

/*
** Connect to the server:
** Allocate a connection structure.
** Set user name and password.
** Create the connection.
*/
ct_con_alloc(context, &connection);
ct_con_props(connection, CS_SET, CS_USERNAME, “username”,

CS_NULLTERM, NULL);
ct_con_props(connection, CS_SET, CS_PASSWORD, “password”,

CS_NULLTERM, NULL);

/*
** This call actually creates the connection:
*/
ct_connect(connection, “servername”, CS_NULLTERM);

/*
** Allocate a command structure.
*/
ct_cmd_alloc(connection, &cmd);

/*
** Initiate a language command.
*/
ct_command(cmd, CS_LANG_CMD,

“use pubs2 \
 select au_lname, city from pubs2..authors \

where state = ’CA’”,
CS_NULLTERM, CS_UNUSED);

/*
** Send the command.
*/
ct_send(cmd);

/*
** Process the results of the command.
*/
while((ret = ct_results(cmd, &res_type))== CS_SUCCEED)
{

switch (res_type)
{
case CS_ROW_RESULT:

/*
** We’re expecting exactly two columns.
** For each column, fill in the relevant

1-12 Introducing Client-Library

A Simple Example Program Open Client Release 10.0

** fields in a data format structure, and
** bind the column.
*/
columns[0].datatype = CS_CHAR_TYPE;
columns[0].format = CS_FMT_NULLTERM;
columns[0].maxlength = MAXSTRING;
columns[0].count = 1;
columns[0].locale = NULL;
ct_bind(cmd, 1, &columns[0], name, &datalength[0],

&indicator[0]);

columns[1].datatype = CS_CHAR_TYPE;
columns[1].format = CS_FMT_NULLTERM;
columns[1].maxlength = MAXSTRING;
columns[1].count = 1;
columns[1].locale = NULL;
ct_bind(cmd, 2, &columns[1], city, &datalength[1],

&indicator[1]);

/*
** Now fetch and print the rows.
*/
while(((ret = ct_fetch(cmd, CS_UNUSED, CS_UNUSED,

CS_UNUSED, &count))
== CS_SUCCEED) || (ret == CS_ROW_FAIL))

{
/*
** Check if we hit a recoverable error.
*/
if(ret == CS_ROW_FAIL)
{

fprintf(stderr,
“Error on row %d in this fetch batch.”,
count+1);

}

/*
** We have a row, let’s print it.
*/
fprintf(stdout, “%s: %s\n”, name, city);

}

/*
** We’re finished processing rows, so check
** ct_fetch’s final return value.
*/
if(ret == CS_END_DATA)
{

Client-Library/C Reference Manual 1-13

Open Client Release 10.0 A Simple Example Program

fprintf(stdout,
“All done processing rows.”);

}
else /* Failure occurred. */
{

error(“ct_fetch failed”);
}

/*
** All done with this result set.
*/
break;

case CS_CMD_SUCCEED:
/*
** Executed a command that never returns rows.
*/
fprintf(stderr, “No rows returned.\n”);
break;

case CS_CMD_FAIL:
/*
** The server encountered an error while
** processing our command.
*/
break;

case CS_CMD_DONE;
/*
** The logical command has been completely
** processed.
*/
break;

default:
/*
** We got something unexpected.
*/
error(“ct_result returned unexpected result

type”);
break;

}
}

/*
** We’ve finished processing results. Let’s check
** the return value of ct_results() to see if

1-14 Introducing Client-Library

A Simple Example Program Open Client Release 10.0

** everything went ok.
*/
switch(ret)
{

case CS_END_RESULTS:
/*
** Everything went fine.
*/
break;

case CS_FAIL:
/*
** Something terrible happened.
*/
error(“ct_results() returned FAIL.”);
break;

default:
/*
** We got an unexpected return value.
*/
error(“ct_result returned unexpected return

code”);
break;

}

** All done.
*/
ct_cmd_drop(cmd);
ct_close(connection, CS_UNUSED);
ct_con_drop(connection);
ct_exit(context, CS_UNUSED);
cs_ctx_drop(context);
return 0;

}

/*
** Error occurred, cleanup and exit.
*/
void error(msg)
char *msg;
{

fprintf(stderr, “FATAL ERROR: %s\n”, msg);
exit(ERROR_EXIT);

}

Client-Library/C Reference Manual 1-15

Open Client Release 10.0 Notes on the Example Program

Notes on the Example Program

The header file ctpublic.h is required in all source files that contain calls
to Client-Library/C. It defines symbolic constants used by Client-
Library routines and contains typedefs for Client-Library datatypes.

Setting Up the Client-Library Programming Environment

The CS-Library routine cs_ctx_alloc allocates a context structure. A
context structure is used to store configuration parameters that
describe a particular “context,” or operating environment, for a set of
server connections. On most platforms, an application can have
multiple contexts, although a typical application will need just one.

Application properties that can be defined at the context level include
the name and location of the interfaces file, the login timeout value,
and the maximum number of connections allowed within the context.

ct_init initializes Client-Library. An application calls ct_init after calling
cs_ctx_alloc and before calling any other Client-Library routine.

Installing Message Callback Routines

ct_callback installs a Client-Library callback routine. Callbacks are
custom routines which are called automatically by Client-Library
when a triggering event of the appropriate type occurs. For example, a
client message callback is called automatically whenever OC-Library
generates an error or informational message.

There are several types of callbacks, but the example program installs
only two: a client message callback, to handle Client-Library error and
informational messages, and a server message callback, to handle
server error and informational messages. Code for the callbacks is not
supplied with this example.

➤ Note
Callback routines are not supported for all programming language/ platform

combinations.If callbacks are not supported for a programming

language/platform version of Client-Library, the Open Client/Server
Supplement for that language and platform will indicate the lack of support.

1-16 Introducing Client-Library

Notes on the Example Program Open Client Release 10.0

Connecting to a Server

ct_con_alloc allocates a connection structure. A connection structure
contains information about a particular client/server connection.

ct_con_props sets and retrieves the values of a connection’s properties.
Connection properties include user name and password, which are
used in logging into a server; application name, which appears in SQL
Server’s sysprocess table, and packet size, which determines the size of
network packets that an application will send and receive. For a
complete list of connection properties, see the Properties topics page.

The example program sets only the user name and password
properties.

ct_connect opens a connection to a server, logging into the server with
the connection information specified via ct_con_props.

Sending a Command to the Server

ct_cmd_alloc allocates a command structure. A command structure is
used to send commands to a server and to process the results of those
commands.

ct_command initiates the process of sending a non-cursor command. In
this case, the example program initiates a language command.

ct_send sends a command to the server.

Processing the Results of the Command

Almost all Client-Library programs will process results by using a
loop controlled by ct_results. Inside the loop, a switch takes place on the
current type of result. Different types of results require different types
of processing.

For row results, typically the number of columns in the result set is
determined and then used to control a loop in which result items are
bound to program variables. An application can call ct_res_info to get
the number of result columns, but in the example this is not necessary,
because exactly two columns were selected. After the result items are
bound, ct_fetch is called to fetch data rows until end-of-data.

The results processing model used in the example looks like this:

Client-Library/C Reference Manual 1-17

Open Client Release 10.0 Notes on the Example Program

while ct_results returns CS_SUCCEED
switch on result_type

case row results
for each column:

ct_bind
end for
while ct_fetch is returning rows

process each row
end while
check ct_fetch’s final return code

end case row results
case other result type....
case other result type....
....

end switch
end while
check ct_results’ final return code

ct_results sets up results for processing. ct_results’ return parameter
result_type indicates the type of result data that is available for
processing. Because the example program expects only a single result
set of type CS_ROW_RESULT, most result types are not included as cases
in the switch on result_type.

Note that the example program calls ct_results in a loop that continues
as long as ct_results returns CS_SUCCEED, indicating that result sets are
available for processing. Although this type of program structure is
not strictly necessary in the case of a simple language command, it is
highly recommended. In more complex programs, it is not possible to
predict the number and type of result sets than an application will
receive in response to a command.

ct_bind binds a result item to a program variable. Binding creates an
association between a result item and a program data space.

ct_fetch fetches result data. In the example, since binding has been
specified and the count field in the CS_DATAFMT structure for each
column is set to 1, each ct_fetch call copies one row of data into program
data space. As each row is fetched, the example program prints it.

After the ct_fetch loop terminates, the example program checks its final
return code to find out whether we dropped out because of end-of-
data, or because of failure.

Finishing Up

ct_cmd_drop de-allocates a command structure.

1-18 Introducing Client-Library

More Advanced Programs Open Client Release 10.0

ct_close closes a server connection.

ct_con_drop de-allocates a connection structure.

ct_exit terminates Client-Library.

The CS-Library routine cs_ctx_drop de-allocates a context structure.

More Advanced Programs

Although some Client-Library applications will be as simple as the
example program in this chapter, most will be more complex. Client-
Library is a rich programming interface that supports a variety of
advanced features.

Some of these features are:

• Asynchronous network I/O support. When asynchronous
network I/O is enabled, a Client-Library routine that reads from or
writes to the network does not block, but instead returns
immediately.

• Registered Procedures. For clients connected to a release 2.0 or
greater Open Server, registered procedures provide a means of
inter-application communication and synchronization. An
application can create, wait for, and execute registered procedures.

• Cursor support. Client-Library contains routines to declare, open,
and manipulate cursors as supported in 10.0 SQL Server and Open
Server.

• International support. Client-Library allows an application to
choose a language for Client-Library and SQL Server messages,
process datetime, money, and numeric values in local formats, and
specify character sets and collating sequences. A Client-Library
application can specify localization information for a context,
connection, or individual data element.

• Gateway support. A gateway is an application that acts as a
“translator” for clients and server that cannot communicate
directly. A gateway application passes requests from a client to a
server, acting as both client and server itself. Client-Library
provides routines specifically for use in building gateway
applications.

• Remote procedure calls. A Client-Library application can send
remote procedure calls to SQL Servers or Open Server
applications.

Client-Library/C Reference Manual 1-19

Open Client Release 10.0 More Advanced Programs

• Text and image datatype support. Client-Library provides routines
to transfer large text or image values to or from a server.

For more information on these and other advanced features, see
Chapter 2, “Topics.”

1-20 Introducing Client-Library

More Advanced Programs Open Client Release 10.0

Topics

Client-Library/C Reference Manual 2-1

2. Topics

This chapter contains information on:

• Client-Library programming topics, such as asynchronous
programming, browse mode, and text and image support.

• How to use routines to accomplish specific programming tasks,
such as declaring and opening a cursor.

• Client-Library properties, datatypes, options, parameter
conventions, and structures.

List of Topics

The following topics are included in this section:

Asynchronous Programming

Browse Mode

Callbacks

Capabilities

Client-Library Messages

Commands

CS_BROWSEDESC Structure

CS_CLIENTMSG Structure

CS_DATAFMT Structure

CS_IODESC Structure

CS_SERVERMSG Structure

Cursors

Dynamic SQL

Error and Message Handling

Header Files

International Support

Logical Sequence of Calls

Message Commands and Results

Open Client Macros

Options

2

2-2 Topics

List of Topics Open Client Release 10.0

Parameter Conventions

Properties

Registered Procedures

Remote Procedure Calls

Results

Sample Programs

Security Features

Server Restrictions

SQLCA Structure

SQLCODE Structure

SQLSTATE Structure

Structures

Text and Image

Types

Client-Library/C Reference Manual 2-3

Open Client Release 10.0 Asynchronous Programming

Asynchronous Programming

Asynchronous applications are designed to make constructive use of
time that would otherwise be spent waiting for certain types of
operations to complete. Typically, reading from and writing to a
network or external device is much slower than straightforward
program execution.

When writing an asynchronous application, the application
programmer must enable asynchronous Client-Library behavior at
the context or connection level by setting the Client-Library property
CS_NETIO to CS_ASYNC_IO. When asynchronous behavior is enabled,
all Client-Library routines that read from or write to the network
either:

• Initiate the requested operation and return CS_PENDING
immediately

• Return CS_BUSY to indicate that an asynchronous operation is
already pending for this connection

Non-asynchronous routines can also return CS_BUSY if called when an
asynchronous operation is pending for a connection.

Learning about Completions

An application can learn of an asynchronous routine completion in
one of two ways:

• On platforms that support interrupt-driven I/O, Client-Library
automatically calls the application’s completion callback routine
when an asynchronous operation completes.

• On platforms that do not support interrupt-driven I/O, an
application can use ct_poll to find out if any asynchronous
operations have completed. If it finds a completed operation,
Client-Library will call an application’s completion callback
routine from within ct_poll.

Asynchronous Routines

The following Client-Library routines can behave asynchronously:

• ct_cancel

• ct_close

• ct_connect

2-4 Topics

Asynchronous Programming Open Client Release 10.0

• ct_fetch

• ct_get_data

• ct_options

• ct_recvpassthru

• ct_results

• ct_send

• ct_send_data

• ct_sendpassthru

Any Client-Library routine that takes a command or connection
structure as a parameter can return CS_BUSY. CS_BUSY indicates that a
routine is unable to perform because the relevant connection is
currently busy, waiting for an asynchronous operation to complete.

An application can call the following routines while an asynchronous
operation is pending:

• Any routine that takes a CS_CONTEXT structure as a parameter. If
the CS_CONTEXT structure is an optional parameter, it must be non-
NULL.

• ct_cancel(CS_CANCEL_ATTN)

• ct_cmd_props(CS_USERDATA)

• ct_con_props(CS_USERDATA)

• ct_poll

Client-Library’s Interrupt-Level Memory Requirements

Ordinarily, Client-Library routines satisfy their memory requirements
by calling malloc. However, because not all implementations of malloc
are re-entrant, it is not safe for Client-Library routines that are called at
the interrupt level to use malloc. For this reason, asynchronous
applications are required to provide an alternate way for Client-
Library to satisfy its memory requirements.

Client-Library provides two mechanisms by which an asynchronous
application can satisfy Client-Library’s memory requirements:

• The application can use the CS_MEM_POOL property to provide
Client-Library with a memory pool.

Client-Library/C Reference Manual 2-5

Open Client Release 10.0 Asynchronous Programming

• The application can use the CS_USER_ALLOC and CS_USER_FREE
properties to install memory allocation routines that Client-Library
can safely call at the interrupt level.

If an asynchronous application fails to provide Client-Library with a
safe way to satisfy memory requirements, Client-Library’s behavior is
undefined.

Client-Library attempts to satisfy memory requirements from the
following sources in the following order:

1. Memory pool

2. User-supplied allocation and free routines

3. System routines

Layered Applications

Asynchronous applications are often layered. In these types of
applications, the lower layer serves to protect the higher layer from
low-level asynchronous detail.

What’s In the Layers?

The higher-level layer typically consists of:

• Main-line code

• Routines that asynchronously perform “larger” operations.

In this discussion, a “larger” operation is a task that requires
several Client-Library calls to complete. For example, updating a
database table is a larger operation because an application needs
to call ct_command, ct_send, and ct_results in order to perform the
update.

The lower-level layer typically consists of:

• The Client-Library routines required to perform a larger operation

• Code to handle low-level asynchronous operation completions

Using ct_wakeup and CS_DISABLE_POLL

ct_wakeup and the CS_DISABLE_POLL property are useful in layered
asynchronous applications:

• A layered application can use CS_DISABLE_POLL to prevent ct_poll
from reporting asynchronous Client-Library routine completions.

2-6 Topics

Asynchronous Programming Open Client Release 10.0

• A layered application can use ct_wakeup to let the higher layer know
when a “larger” asynchronous operation is complete.

A layered application that is using a routine to perform a “larger”
operation typically uses ct_wakeup and CS_DISABLE_POLL in the
following manner:

1. The application performs any necessary initialization, installs
callback routines, opens connections, etc.

2. The application calls the routine performing the larger operation.

3. If the application uses ct_poll to check for asynchronous
completions, then the routine must disable polling. This prevents
ct_poll from reporting lower-level asynchronous completions to the
higher-level layer. To disable polling, the routine sets
CS_DISABLE_POLL to CS_TRUE.

If the application does not call ct_poll, the routine does not need to
disable polling.

4. The routine calls ct_callback to replace the higher-level layer’s
completion callback with its own completion callback.

5. The routine performs its work.

6. The routine re-installs the higher-level layer’s completion
callback.

7. If polling has been disabled, the routine enables it again by setting
the CS_DISABLE_POLL property to CS_FALSE.

8. The routine calls ct_wakeup to trigger the higher-level layer’s
completion callback routine.

A Brief Example

An application that performs asynchronous database updates might
include the routine do_update, where do_update calls all of the Client-
Library routines necessary to perform a database update.

The main application can call do_update asynchronously and go on with
its other work.

When called, do_update replaces the main application’s completion
callback with its own (so that the main application’s callback is not
triggered by low-level asynchronous completions), and proceeds with
the work of the update. In order to perform the update, do_update needs
to call several Client-Library routines, including ct_send and ct_results,
which behave asynchronously. When each asynchronous routine
completes, it triggers do_update’s completion callback.

Client-Library/C Reference Manual 2-7

Open Client Release 10.0 Asynchronous Programming

When do_update has finished the update operation, it re-installs the
main application’s completion callback and calls ct_wakeup with
function as its own function id. This triggers the main application’s
completion callback, letting the main application know that do_update
has completed.

2-8 Topics

Browse Mode Open Client Release 10.0

Browse Mode

➤ Note
Browse mode is included in 10.0 Client-Library in order to provide compatibility

with Open Server applications and older Open Client libraries. Its use in new

Open Client Client-Library applications is discouraged, because cursors

provide the same functionality in a more portable and flexible manner. Further,

browse mode is SYBASE-specific and is not suited for use in a heterogeneous

environment.

Browse mode provides a means for browsing through database rows
and updating their values a row at a time. From the standpoint of an
application program, the process involves several steps, because each
row must be transferred from the database into program variables
before it can be browsed and updated.

Since a row being browsed is not the actual row residing in the
database, but is instead a copy residing in program variables, the
program must be able to ensure that changes to the variables’ values
can be reliably used to update the original database row. In particular,
in multi-user situations, the program needs to ensure that updates
made to the database by one user do not unwittingly overwrite
updates recently made by another user. This can be a problem because
an application typically selects a number of rows from a database at
one time, but the application’s users browse and update the database
one row at a time. A timestamp column in browsable tables provides
the information necessary to regulate this type of multi-user updating.

Because some applications permit users to enter ad-hoc browse mode
queries, Client-Library provides two routines, ct_br_table and
ct_br_column, that allow an application to retrieve information about the
tables and columns underlying a browse-mode result set. This
information is useful when an application is constructing commands
to perform browse-mode updates.

A browse-mode application requires two connections, one for
selecting the data and a second for performing the updates.

For more information on browse mode, see the SQL Server Reference
Manual.

Client-Library/C Reference Manual 2-9

Open Client Release 10.0 Browse Mode

Implementing Browse Mode

Conceptually, browse mode involves two steps:

1. Select rows containing columns derived from one or more
database tables.

2. Where appropriate, change values in columns of the result rows
(not the actual database rows), one row at a time, and use the new
values to update the original database tables.

These steps are implemented in a program as follows:

1. Set a connection’s CS_HIDDEN_KEYS property to CS_TRUE. This
ensures that Client-Library returns a table’s timestamp column as
part of a result set. In browse-mode updates, the timestamp
column is used to regulate multi-user updates.

2. Execute a select...for browse language command. This command
generates a regular row result set. This result set contains hidden
key columns (one of which is the timestamp column) in addition to
explicitly selected columns.

3. After ct_results indicates regular row results, call ct_describe to get
CS_DATAFMT descriptions of the result columns:

- To indicate the timestamp column, ct_describe sets the
CS_TIMESTAMP and CS_HIDDEN bits in the *datafmt→status field.

- To indicate an ordinary hidden key column, ct_describe sets the
CS_HIDDEN bit in the *datafmt→status field. If the CS_HIDDEN bit is
not set, the column is an explicitly-selected column.

4. Call ct_bind to bind the result columns of interest. An application
must bind all hidden columns because it will need the values of
these columns to build a qualifier at update time.

5. Call ct_br_table, if necessary, to retrieve information about the
database tables that underlie the result set. Call ct_br_column, if
necessary, to retrieve information about a specific result set
column. Both of these types of information can be useful when
building a language command to update the database.

6. Call ct_fetch in a loop to fetch rows. When a row is fetched that
contains values that need to be changed, update the database
table(s) with the new values. To do this:

- Construct a language command containing a Transact-SQL update
statement with a where-clause qualifier that uses the row’s
hidden columns (including the timestamp column).

2-10 Topics

Browse Mode Open Client Release 10.0

- Send the language command to the server and process the results
of the command.

A language command containing a browse-mode update
statement generates a result set of type CS_PARAM_RESULT. This
result set contains a single result item, the new timestamp for the
row.

If the application plans to update this same row again, it must
save the new timestamp for later use.

After one browse-mode row has been updated, the application
can fetch and process the next row.

Browse-mode Conditions

To use browse mode, the following conditions must be true:

• The select command that generated the result set must end with the
key words for browse.

• The table(s) to be updated must be “browsable” (i.e., each must
have a unique index and a timestamp column).

• The result columns to be updated cannot be the result of SQL
expressions, such as max(colname).

Client-Library/C Reference Manual 2-11

Open Client Release 10.0 Callbacks

Callbacks

What Are Callbacks?

Callbacks are user-supplied routines that are automatically called by
Client-Library whenever certain triggering events, known as callback
events, occur.

Some callback events are the result of a server response arriving for an
application. For example, a notification callback event occurs when a
registered procedure notification arrives from an Open Server.

Other callback events occur at the internal Client-Library level. For
example, a client message callback event occurs when Client-Library
generates an error message.

When Are Callbacks Called?

When Client-Library recognizes a callback event, it automatically calls
the appropriate callback routine.

In order for Client-Library to recognize some callback events, it must
be actively engaged in reading from the network. Most callback events
of this type occur when Client-Library is naturally reading from the
network, and are handled automatically.

Two types of callback events, however, can occur when Client-Library
is not reading from the network. These are:

• The completion callback event, which occurs when an
asynchronous Client-Library routine completes.

• The notification callback event, which occurs when an Open Server
notification arrives for an application.

If a platform supports interrupt-driven I/O, completion and
notification callbacks are called at the interrupt level when a
completion or notification callback event occurs. If a platform does not
support interrupt-driven I/O, however, an application will need to
call ct_poll to check for these events if it is not otherwise reading from
the network.

If ct_poll finds an asynchronous routine completion or an Open Server
notification, it automatically calls the appropriate callback routine
before returning.

2-12 Topics

Callbacks Open Client Release 10.0

➤ Note
Because some types of callback routines can be executed at interrupt time, a

callback routine must take care in accessing data structures that are also used

by the application’s main-line code.

Types of Callbacks

The following table lists the types of callbacks, when they are called,
and whether an application needs to use ct_poll to trigger them:

Type of Callback: When Is it Called? How Is it Called?

Client Message In response to a Client-Library
error or informational
message.

When Client-Library generates an error or
informational message, Client-Library
automatically triggers the client message callback.

Completion When an asynchronous Client-
Library routine completes.

An asynchronous routine completion can occur at
any time.

On platforms that support interrupt-driven I/O,
the completion callback is called automatically, at
the interrupt level, when the completion occurs.

On platforms that do not support interrupt-driven
I/O, an application can use ct_poll to find out if
any routines have completed.

Encryption During the connection process,
in response to a server request
for an encrypted password.

If a connection’s CS_SEC_ENCRYPTION property
is set to CS_TRUE, then Client-Library
automatically triggers the encryption callback
when a server requests an encrypted password
during a connection attempt.

Negotiation During the connection process:

- In response to a server
request for login security
labels.

- In response to a server
challenge.

If a connection’s CS_SEC_NEGOTIATE property is
CS_TRUE, then Client-Library automatically
triggers the negotiation callback when a server
requests login security labels during a connection
attempt.

If a connection’s CS_SEC_CHALLENGE property
is CS_TRUE, then Client-Library automatically
triggers the negotiation callback when a server
issues a challenge during a connection attempt.

Table 2-1: Types of callbacks

Client-Library/C Reference Manual 2-13

Open Client Release 10.0 Callbacks

Callbacks Are Not Universally Implemented

Callbacks may not be implemented for programming language/
platform combinations that do not support function calls by pointer
reference. If this is the case, an application:

• Must handle Client-Library and server messages in-line, using
ct_diag.

• Can still use ct_poll to check for a completion or notification callback
event, but will have to call any routine handling the event directly.

If callbacks are not supported for a programming language/platform
version of Client-Library, the Open Client/Server Supplement for that
language and platform will indicate the lack of support.

Installing a Callback Routine

An application installs a callback routine by calling ct_callback, passing
a pointer to the callback routine and indicating its type via the type
parameter.

Notification When an Open Server
notification arrives.

An Open Server notification can arrive at any time.

On platforms that support interrupt-driven I/O,
the notification callback is called at the interrupt
level when the completion occurs.

On platforms that do not support interrupt-driven
I/O, an application must be actively reading from
the network in order for Client-Library to
recognize a notification. If an application is not
actively reading from the network, it can use
ct_poll to find out if a notification has arrived.

Server Message In response to a server error or
informational message.

Server messages occur as the result of specific
commands. When an application processes the
results of a command, Client-Library reads any
error or informational messages related to the
command, automatically triggering the server
message callback.

Signal In response to an operating-
system signal.

When a signal arrives, Client-Library’s own signal
handler automatically calls the signal callback that
an application has installed.

Type of Callback: When Is it Called? How Is it Called?

Table 2-1: Types of callbacks (continued)

2-14 Topics

Callbacks Open Client Release 10.0

A callback of a particular type can be installed at the context or
connection level. When a connection is allocated, it picks up default
callbacks from its parent context. An application can override these
default callbacks by calling ct_callback to install new callbacks at the
connection level.

When a Callback Event Occurs

For most types of callbacks, when a callback event occurs:

• If a callback of the proper type exists at the proper level, it is called.

• If a callback of the proper type does not exist at the proper level
then the callback event information is discarded.

The client message callback is an exception to this rule. When an error
or informational message is generated for a connection that has no
client message callback installed, Client-Library calls the connection’s
parent context’s client message callback (if any) rather than discarding
the message. If the context has no client message callback installed,
then the message is discarded.

Retrieving and Replacing Callback Routines

To retrieve a pointer to a currently-installed callback, call ct_callback
with the parameter action as CS_GET. ct_callback sets *func to the address
of the current callback. An application can save this address for re-use
at a later time.

To de-install a callback, call ct_callback with the parameter action as
CS_SET and func as NULL.

To replace an existing callback routine with a new one, call ct_callback to
install the new routine. ct_callback will replace the existing callback with
the new callback.

Client-Library/C Reference Manual 2-15

Open Client Release 10.0 Callbacks

Defining Callback Routines

All callback routines are limited as to which Client-Library routines
they can call. The following table lists types of callback routines and
the Client-Library routines that they can call:

The following sections contain information on how to define each type
of callback routine:

Type of Callback Can Call Under What Circumstances?

All Callback
Routines

ct_config To retrieve information only.

ct_con_props To retrieve information or to set the
CS_USERDATA property only.

ct_cmd_props To retrieve information or to set the
CS_USERDATA property only.

ct_cancel
(CS_CANCEL_ATTN)

Server Message ct_bind, ct_describe, ct_fetch,
ct_get_data, ct_res_info

The routines must be called with the
command structure returned by the
callbacks’s ct_con_props(CS_EED_CMD)
call.

For more information, see ‘‘Extended Error
Data’’ on page 2-79.

Notification ct_bind, ct_describe, ct_fetch,
ct_get_data,
ct_res_info(CS_NUMDATA)

The routines must be called with the
command structure returned by the
callbacks’s ct_con_props(CS_NOTIF_CMD)
call.

For more information, see ‘‘Registered
Procedures’’ on page 2-157.

Completion Any Client-Library or CS-Library
routine except cs_objects
(CS_SET), ct_init, ct_exit,
ct_setloginfo, and ct_getloginfo.

cs_objects(CS_SET) is not
asynchronous-safe, and ct_init,
ct_exit, ct_setloginfo, and
ct_getloginfo perform system-level
memory allocation or free.

Table 2-2: Callbacks can call these Client-Library routines

2-16 Topics

Callbacks Open Client Release 10.0

Client Message Callbacks

An application can handle Client-Library error and informational
messages in-line, or through a client message callback routine.

 When a connection is allocated, it picks up a default client message
callback from its parent context. If the parent context has no client
message callback installed, then the connection is created without a
default client message callback.

After allocating a connection, an application can:

• Install a different client message callback for the connection.

• Call ct_diag to initialize in-line message handling for the connection.
Note that ct_diag automatically de-installs all message callbacks for
the connection.

If a client message callback is not installed for a connection or its
parent context and in-line message handling is not enabled, Client-
Library discards message information.

If callbacks are not implemented for a particular programming
language/platform version of Client-Library, an application must
handle Client-Library messages in-line, using ct_diag.

If a connection is handling Client-Library messages through a client
message callback, then the callback is called whenever Client-Library
generates an error or informational message

➤ Note
The exception to this rule is that Client-Library does not call the client message

callback when a message is generated from within most types of callback

routines. Client-Library does call the client message callback when a message

is generated within a completion callback.

That is, if a Client-Library routine fails within a callback routine other than the

completion callback, the routine returns CS_FAIL but does not trigger the client

message callback.

Defining a Client Message Callback

A client message callback is defined as follows:

Client-Library/C Reference Manual 2-17

Open Client Release 10.0 Callbacks

CS_RETCODE clientmsg_cb(context, connection, message)

CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_CLIENTMSG *message;

where:

context is a pointer to the CS_CONTEXT structure for which the message
occurred.

connection is a pointer to the CS_CONNECTION structure for which the
message occurred, if any. connection can be NULL.

message is a pointer to a CS_CLIENTMSG structure containing Client-
Library message information. For information on the
CS_CLIENTMSG structure, see the CS_CLIENTMSG topics page.

Note that message can have a new value each time the client
message callback is called.

A client message callback must return either:

• CS_SUCCEED, to instruct Client-Library to continue any processing
that is currently occurring on this connection.

If a timeout error occurs, CS_SUCCEED causes Client-Library to
wait for the duration of a full timeout period before calling the
client message callback again. It continues this behavior until
either the command succeeds without timing out or until the
server cancels the current command in response to a
ct_cancel(CS_CANCEL_ATTN) call from the client message callback.

➤ Note
It is possible, in some cases, that a server will be unable to respond to a client’s

cancel command. Such a situation could occur, for example, if the server is

processing a very complex query and is not in an interruptable state.

• CS_FAIL, to instruct Client-Library to terminate any processing that
is currently occurring on this connection. A return of CS_FAIL
results in the connection being marked as dead. In order to
continue using the connection, the application must close the
connection and reopen it.

2-18 Topics

Callbacks Open Client Release 10.0

The following table lists the Client-Library routines that a client
message callback can call:

Client Message Callback Example

This is an example of a client message callback:

/*
** ex_clientmsg_cb()
**
** Type of function:
** Example program client message handler
**
** Purpose:
** Installed as a callback into Open Client.
**
** Returns:
** CS_SUCCEED
**
** Side Effects:
** None
*/

CS_RETCODE CS_PUBLIC
ex_clientmsg_cb(context, connection, errmsg)
CS_CONTEXT *context
CS_CONNECTION *connection;
CS_CLIENTMSG *errmsg;
{

fprintf(EX_ERROR_OUT, "\nOpen Client Message:\n");
fprintf(EX_ERROR_OUT, "Message number:

LAYER = (%ld) ORIGIN = (%ld) ",
CS_LAYER(errmsg->msgnumber),
CS_ORIGIN(errmsg->msgnumber));

fprintf(EX_ERROR_OUT, "SEVERITY = (%ld)

A Client Message Callback Can Call: Under What Circumstances?

ct_config To retrieve information only.

ct_con_props To retrieve information or to set the
CS_USERDATA property only.

ct_cmd_props To retrieve information or to set the
CS_USERDATA property only.

ct_cancel
(CS_CANCEL_ATTN)

Any.

Table 2-3: Routines that a client message callback can call

Client-Library/C Reference Manual 2-19

Open Client Release 10.0 Callbacks

NUMBER = (%ld)\n",
CS_SEVERITY(errmsg->msgnumber),
CS_NUMBER(errmsg->msgnumber));

fprintf(EX_ERROR_OUT, "Message String: %s\n",
errmsg->msgstring);

if (errmsg->osstringlen > 0)
{

fprintf(EX_ERROR_OUT, "Operating System \
Error: %s\n", errmsg->osstring);

}

return CS_SUCCEED;
}

Completion Callbacks

A completion callback is called whenever an application receives
notice that an asynchronous routine has completed.

A context or a connection can be defined to be asynchronous. If a
context is asynchronous, then all connections within that context are
asynchronous, unless defined otherwise.

When a connection is asynchronous, Client-Library routines that
perform network I/O do not block, but instead return CS_PENDING
immediately. When a routine completes, Client-Library automatically
calls the completion callback.

A completion callback is typically coded to notify the main-line code
of the asynchronous routine’s completion.

Defining a Completion Callback

A completion callback is defined as follows:

CS_RETCODE completion_cb(connection, cmd, function,
status)

CS_CONNECTION *connection;
CS_COMMAND *cmd;
CS_INT function;
CS_RETCODE status;

where:

connection is a pointer to the CS_CONNECTION structure representing
the connection that performed the I/O for the routine.

cmd is a pointer to the CS_COMMAND structure for the routine, if any.
cmd can be NULL.

2-20 Topics

Callbacks Open Client Release 10.0

function indicates which routine has completed. The following table
lists the symbolic values possible for function:

status is the return status of the completed routine. To find out what
values status can have, see Returns on the manual page for the
routine.

Because it is regarded as an extension of main-line code, a completion
callback can call any Client-Library routine.

If a completion callback calls an asynchronous Client-Library routine,
it should return the value returned by the routine itself. Otherwise,
there are no restrictions on what a completion callback can return. It is
recommended, however, that the completion callback return either
CS_SUCCEED if the completion callback succeeded or CS_FAIL if an error
occurred.

Value of function: Indicating:

BLK_ROWXFER blk_rowxfer has completed.

BLK_SENDROW blk_sendrow has completed.

BLK_SENDTEXT blk_sendtext has completed.

BLK_TEXTXFER blk_textxfer has completed

CT_CANCEL ct_cancel has completed.

CT_CLOSE ct_close has completed.

CT_CONNECT ct_connect has completed.

CT_FETCH ct_fetch has completed.

CT_GET_DATA ct_get_data has completed.

CT_OPTIONS ct_options has completed.

CT_RECVPASSTHRU ct_recvpassthru has completed.

CT_RESULTS ct_results has completed.

CT_SEND ct_send has completed.

CT_SEND_DATA ct_send_data has completed.

CT_SENDPASSTHRU ct_sendpassthru has completed.

A user-defined value.
This value must be
greater than or equal to
CT_USER_FUNC.

A user-defined function has completed.

Table 2-4: Values for function (Completion Callback)

Client-Library/C Reference Manual 2-21

Open Client Release 10.0 Callbacks

Completion Callback Example

The following is an example of a completion callback:

/*
** ex_acompletion_cb()
**
** Type of function:
** Internal example async lib
**
** Purpose:
** Installed as a callback into Open Client. It
** will dispatch to the appropriate completion
** processing routine based on async state.
**
** Another approach to callback processing is to
** have each completion routine install the
** completion callback for the next step in
** processing. We use one dispatch point to aid
** in debugging the async processing (only need
** to set one breakpoint).
**
** Returns:
** Return of completion processing routine.
**
** Side Effects:
** None
*/

CS_STATIC CS_RETCODE CS_INTERNAL
ex_acompletion_cb(connection, cmd, function, status)
CS_CONNECTION *connection;
CS_COMMAND *cmd;
CS_INT function;
CS_RETCODE status;
{

CS_RETCODE retstat;
ExAsync *ex_async;

/*
** Extract the user area out of the command
** handle.
*/
retstat = ct_cmd_props(cmd, CS_GET, CS_USERDATA,

&ex_async, CS_SIZEOF(ex_async), NULL);
if (retstat != CS_SUCCEED)
{

return retstat;
}

2-22 Topics

Callbacks Open Client Release 10.0

fprintf(stdout, "\nex_acompletion_cb: function \
%ld Completed", function);

/* Based on async state, do the right thing */
switch ((int)ex_async->state)
{

case EX_ASEND:
case EX_ACANCEL_CURRENT:
retstat = ex_asend_comp(ex_async, connection,

cmd, function, status);
break;

case EX_ARESULTS:
retstat = ex_aresults_comp(ex_async,

connection, cmd, function, status);
break;

case EX_AFETCH:
retstat = ex_afetch_comp(ex_async,

connection, cmd, function, status);
break;

case EX_ACANCEL_ALL:
retstat = ex_adone_comp(ex_async, connection,

cmd, function, status);
break;

default:
ex_apanic("ex_acompletion_cb: unexpected \

async state");
break;

}

return retstat;
}

Encryption Callbacks

SQL Server uses encrypted password handshakes. Most applications
are not aware of this because Client-Library automatically handles it.

Client-Library applications that are acting as gateways, however, need
to handle password encryption explicitly, using an encryption callback
routine to pass the server’s encryption key to the client and to return
the encrypted password back to the server.

In order to use an encryption callback, a connection must have its
CS_SEC_ENCRYPTION property set to CS_TRUE.

Client-Library/C Reference Manual 2-23

Open Client Release 10.0 Callbacks

For more information on handling encrypted password security
handshakes, see ‘‘Encrypted Password Security Handshakes’’ on page
2-177.

Defining an Encryption Callback

An encryption callback is defined as follows:

CS_RETCODE encrypt_cb(connection, pwd, pwdlen,
key, keylen, buf, buflen, outlen)

CS_CONNECTION *connection;
CS_BYTE *pwd;
CS_INT pwdlen;
CS_BYTE *key;
CS_INT keylen;
CS_BYTE *buffer;
CS_INT buflen;
CS_INT *outlen;

where:

connection is a pointer to the CS_CONNECTION structure representing
the connection that is logging into the server.

pwd is the user password to be encrypted

pwdlen is the length of the password

key is the key to use to encrypt the password.

keylen is the length of the encryption key

buffer is a pointer to a buffer. The encryption callback should place the
encrypted password in this buffer. This buffer is allocated and
freed by Client-Library. Its length is described by buflen.

buflen is the length, in bytes, of the *buffer data space.

outlen is a pointer to a CS_INT. The encryption callback must set *outlen
to the length of the encrypted password placed in *buffer.

An encryption callback should return CS_SUCCEED to indicate that the
password was successfully encrypted. If the encryption callback
returns a value other than CS_SUCCEED, Client-Library aborts the
connection attempt, causing ct_connect to return CS_FAIL.

2-24 Topics

Callbacks Open Client Release 10.0

Negotiation Callbacks

Client-Library uses the negotiation callback to handle both trusted-
user security handshakes and challenge/response security
handshakes.

For more information on these types of handshakes, see ‘‘Security
Features’’ on page 2-175.

Trusted-User Security Handshakes

When logging into a server, a trusted-user security handshake occurs
when the server asks the client for identifying security labels, which
the client then provides.

A connection can use a negotiation callback to provide these security
labels. To do this, the connection installs a negotiation callback routine.
At connection time, when Client-Library receives the server request
for login security labels, it triggers the negotiation callback.

A connection can also use ct_labels to define security labels. For more
information, see the manual page for ct_labels.

A connection that will be participating in trusted-user security
handshakes must set its CS_SEC_NEGOTIATE property to CS_TRUE.

Challenge/Response Security Handshakes

When logging into a server, a challenge/response security handshake
occurs when the server issues a challenge, to which the client must
respond.

A connection can use a negotiation callback to provide its response to
the challenge. To do this, the connection installs a negotiation callback
routine. At connection time, when Client-Library receives the server
challenge, it triggers the negotiation callback.

A connection that will be participating in challenge/response security
handshakes must set either its CS_SEC_CHALLENGE property or its
CS_SEC_APPDEFINED property to CS_TRUE.

Defining a Negotiation Callback

A negotiation callback is defined as follows:

Client-Library/C Reference Manual 2-25

Open Client Release 10.0 Callbacks

CS_RETCODE negotiation_cb(connection, inmsgid,
outmsgid, inbuffmt, inbuf, outbuffmt,
outbuf, outbufoutlen)

CS_CONNECTION *connection;
CS_INT inmsgid;
CS_INT *outmsgid;
CS_DATAFMT *inbuffmt;
CS_BYTE *inbuf;
CS_DATAFMT *outbuffmt;
CS_BYTE *outbuf;
CS_INT *outbufoutlen;

where:

connection is a pointer to the CS_CONNECTION structure representing
the connection that is logging into the server.

inmsgid is the type of information that the server is requesting. The
following table lists the values that are legal for inmsgid:

outmsgid is the type of information that the negotiation callback is
returning. The following table lists the values that are legal for
outmsgid:

Value of inmsgid: To Indicate:

CS_MSG_GETLABELS The server is requesting security labels.

A user-defined value <
CS_USER_MSGID

The server is requesting a Sybase-defined
value. It is the negotiation callback’s
responsibility to understand the meaning of
inmsgid.

A user-defined value >=
CS_USER_MSGID and <=
CS_USER_MAX_MSGID

The Open Server application is requesting
an application-defined value. It is the
negotiation callback’s responsibility to
understand the meaning of inmsgid.

Table 2-5: Values for inmsgid (Negotiation Callback)

Value of outmsgid: To Indicate:

CS_MSG_LABELS The negotiation callback is returning
security labels.

Table 2-6: Values for outmsgid (Negotiation Callback)

2-26 Topics

Callbacks Open Client Release 10.0

inbuffmt is a pointer to a CS_DATAFMT structure. If the negotiation
callback is handling a trusted-user handshake, inbuffmt is NULL. If
the negotiation callback is handling a challenge/response
handshake, *inbuffmt describes the inbuf challenge key.

inbuf is a pointer to data space. If the negotiation callback is handling a
trusted-user handshake, inbuf is NULL. If the negotiation callback is
handling a challenge/response handshake, inbuf points to the
challenge key.

outbuffmt is a pointer to a CS_DATAFMT structure. The negotiation
callback should fill this CS_DATAFMT with a description of the
security label or response that it is returning.

Client-Library does not define which fields in the CS_DATAFMT
need to be set; however, Secure SQL Server requires values for
the name, namelen, and datatype fields.

outbuf is a pointer to a buffer. The negotiation callback should place the
security label or response in this buffer. This buffer is allocated and
freed by Client-Library. Its length is described by outbuffmt→max-
length.

outbufoutlen is the length, in bytes, of the data placed in *outbuf.

A negotiation callback must return CS_SUCCEED, CS_FAIL, or
CS_CONTINUE:

• If the callback returns CS_CONTINUE, Client-Library calls the
negotiation callback again to generate an additional security label
or response.

• If the callback returns CS_SUCCEED, Client-Library sends the
security label(s) or response(s) to the server.

• If the callback returns CS_FAIL, Client-Library aborts the connection
process, causing ct_connect to return CS_FAIL.

A user-defined value <
CS_USER_MSGID

The callback is returning a Sybase-defined
value.

A user-defined value >=
CS_USER_MSGID and <=
CS_USER_MAX_MSGID

The callback is returning an application-
defined value.

Value of outmsgid: To Indicate:

Table 2-6: Values for outmsgid (Negotiation Callback) (continued)

Client-Library/C Reference Manual 2-27

Open Client Release 10.0 Callbacks

Notification Callbacks

A registered procedure is a type of procedure that is defined and
installed in a running Open Server. A Client-Library application can
use a remote procedure call command to execute a registered
procedure, and can “watch” for a registered procedure to execute.

When a registered procedure executes, applications watching for it
receive a notification that includes the procedure’s name and the
arguments it was called with.

When Client-Library receives a notification, it calls an application’s
notification callback routine.

The registered procedure’s name is available as the second parameter
to the notification callback routine.

The arguments with which the registered procedure was called are
available inside the notification callback, as a parameter result set. To
retrieve these arguments, an application:

• Calls ct_con_props(CS_NOTIF_CMD) to retrieve a pointer to the
command structure containing the parameter result set.

• Calls ct_res_info(CS_NUMDATA), ct_describe, ct_bind, ct_fetch, and
ct_get_data to describe, bind, and fetch the parameters.

For more information on registered procedures, see the Registered
Procedures topics page, 2-157.

Defining a Notification Callback

A notification callback is defined as follows:

CS_RETCODE notification_cb(conn, proc_name, pnamelen)

CS_CONNECTION *conn;
CS_CHAR *proc_name;
CS_INT pnamelen;

where:

connection is a pointer to the CS_CONNECTION structure receiving the
notification. This CS_CONNECTION is the parent connection of the
CS_COMMAND that sent the request to be notified.

proc_name is a pointer to the name of the registered procedure that has
been executed.

pnamelen is the length, in bytes, of *proc_name.

A notification callback must return CS_SUCCEED.

2-28 Topics

Callbacks Open Client Release 10.0

The following table lists the Client-Library routines that a notification
callback can call:

Server Message Callbacks

An application can handle server error and informational messages in-
line, or through a server message callback routine.

 When a connection is allocated, it picks up a default server message
callback from its parent context. If the parent context has no server
message callback installed, then the connection is created without a
default server message callback.

After allocating a connection, an application can:

• Install a different server message callback for the connection.

• Call ct_diag to initialize in-line message handling for the connection.
Note that ct_diag automatically de-installs all message callbacks for
the connection.

If a server message callback is not installed and in-line message
handling is not enabled, Client-Library discards server message
information.

If callbacks are not implemented for a particular programming
language/platform version of Client-Library, an application must
handle server messages in-line, using ct_diag.

A Notification Callback Can Call: Under What Circumstances?

ct_config To retrieve information only.

ct_con_props To retrieve information or to set the
CS_USERDATA property only.

ct_cmd_props To retrieve information or to set the
CS_USERDATA property only.

ct_cancel
(CS_CANCEL_ATTN)

Any

ct_bind, ct_describe, ct_fetch,
ct_get_data,
ct_res_info(CS_NUMDATA)

The routines must be called with the
command structure returned by the
callbacks’s ct_con_props(CS_NOTIF_CMD)
call.

For more information, see ‘‘Registered
Procedures’’ on page 2-157.

Table 2-7: Routines that a notification callback can call

Client-Library/C Reference Manual 2-29

Open Client Release 10.0 Callbacks

If a connection is handling server messages through a server message
callback, then the callback is called whenever a server message arrives.

Defining a Server Message Callback

A server message callback is defined as follows:

CS_RETCODE servermsg_cb(context, connection, message)

CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_SERVERMSG *message;

where:

context is a pointer to the CS_CONTEXT structure for which the message
occurred.

connection is a pointer to the CS_CONNECTION structure for which the
message occurred.

message is a pointer to a CS_SERVERMSG structure containing server
message information. For information on the CS_SERVERMSG data
structure, see the CS_SERVERMSG topics page.

Note that message can have a new value each time the server
message callback is called.

A server message callback must return CS_SUCCEED.

The following table lists the Client-Library routines that a server
message callback can call:

A Server Message
Callback Can Call: Under What Circumstances?

ct_config To retrieve information only.

ct_con_props To retrieve information or to set the
CS_USERDATA property only.

ct_cmd_props To retrieve information or to set the
CS_USERDATA property only.

ct_cancel
(CS_CANCEL_ATTN)

Any.

Table 2-8: Routines that a server message callback can call

2-30 Topics

Callbacks Open Client Release 10.0

Server Message Callback Example

This is an example of a server message callback:

/*
** ex_servermsg_cb()
**
** Type of function:
** Example program server message handler
**
** Purpose:
** Installed as a callback into Open Client.
**
** Returns:
** CS_SUCCEED
**
** Side Effects:
** None
*/
CS_RETCODE CS_PUBLIC
ex_servermsg_cb(connection, cmd, srvmsg)
CS_CONNECTION* connection;
CS_COMMAND *cmd;
CS_SERVERMSG *srvmsg;
{

fprintf(EX_ERROR_OUT, "\nServer message:\n");
fprintf(EX_ERROR_OUT, "Message number: %ld, \

Severity %ld, ", srvmsg->msgnumber,
srvmsg->severity);

fprintf(EX_ERROR_OUT, "State %ld, Line %ld",
srvmsg->state, srvmsg->line);

ct_bind, ct_describe, ct_fetch,
ct_get_data, ct_res_info

The routines must be called with the
command structure returned by the
callbacks’s ct_con_props(CS_EED_CMD)
call.

A server message callback can call these
routines only while extended error data is
available; that is, until ct_fetch returns
CS_END_DATA.

For more information, see ‘‘Extended Error
Data’’ on page 2-79.

A Server Message
Callback Can Call: Under What Circumstances?

Table 2-8: Routines that a server message callback can call (continued)

Client-Library/C Reference Manual 2-31

Open Client Release 10.0 Callbacks

if (srvmsg->svrnlen > 0)
{

fprintf(EX_ERROR_OUT, "\nServer '%s'",
srvmsg->svrname);

}

if (srvmsg->proclen > 0)
{

fprintf(EX_ERROR_OUT, " Procedure '%s'",
srvmsg->proc);

}

fprintf(EX_ERROR_OUT, "\nMessage String: %s",
srvmsg->text);

return CS_SUCCEED;
}

Signal Callbacks

A signal callback is called whenever a process receives a signal on a
UNIX platform.

An application that needs to handle signals for its own purposes must
do so by calling ct_callback to install signal callbacks, rather than by
making a signal system call to install a signal handler. This is because
a signal system call will de-install Client-Library’s signal handler. If
this occurs, Client-Library’s behavior is undefined.

When Client-Library receives a signal, Client-Library’s signal handler:

• Performs any internal Client-Library processing that is required.

• Calls the appropriate user-defined signal callback, if any.

An application that plans to install a signal callback must include the
header file sys/signal.h.

Defining a Signal Callback

A signal callback must be defined according to operating system
specifications.

Installing a Signal Callback

A signal callback can be installed only at the context level.

Signal callbacks are identified by adding the signal number on to the
manifest constant CS_SIGNAL_CB.

The following routine demonstrates how to install a signal callback:

2-32 Topics

Callbacks Open Client Release 10.0

/*
** INSTALLSIGNALCB
**
** This routine installs a signal callback for the
** specified signal
**
** Parameters:
** cp Context handle
** signo Signal number
** signalhandlerSignal handler to install
**
** Returns:
** CS_SUCCEED Signal handler was installed
** successfully
** CS_FAIL An error was detected while
** installing the signal handler
*/
CS_RETCODE installsignalcb(cp, signo, signalhandler)
CS_CONTEXT*cp;
CS_INT signo;
CS_VOID *signalhandler;
{

CS_INT adjustedsigno;
CS_RETCODE ret;

/*
** Add the signal number to the CS_SIGNAL_CB
** define to indicate the signal number that this
** handler is being installed for.
*/
adjustedsigno = CS_SIGNAL_CB + signo;

ret = ct_callback(cp, (CS_CONNECTION *)NULL,
CS_SET, adjustedsigno, signalhandler);

return(ret);
}

Client-Library/C Reference Manual 2-33

Open Client Release 10.0 Capabilities

Capabilities

Capabilities describe features that a client/server connection
supports.

For a list of capabilities, see ct_capability on page 3-31.

What are Capabilities Good For?

An application can use capabilities to find out what features are
supported by a connection’s actual TDS version.

In particular, an application can:

• Find out whether a server connection supports a particular type of
request.

• Tell a server not to send a particular type of response on a
connection.

Types of Capabilities

There are two types of capabilities:

• CS_CAP_REQUEST capabilities, or “request capabilities,” which
describe the types of client requests that can be sent on a server
connection.

• CS_CAP_RESPONSE capabilities, or “response capabilities,” which
describe the types of server responses that a connection does not
wish to receive.

Setting and Retrieving Capabilities

Before calling ct_connect to open a connection, an application can:

• Retrieve request or response capabilities, to determine what
request and response features are normally supported at the
connection’s current TDS version level. A connection’s TDS level
defaults to the version level that the application requested in its call
to ct_init. An application can change a connection’s TDS level by
calling ct_con_props with property as CS_TDS_VERSION.

2-34 Topics

Capabilities Open Client Release 10.0

• Set response capabilities, to indicate that a connection does not
wish to receive particular types of responses. For example, an
application can set a connection’s TDS_RES_NOEED capability to
CS_TRUE to indicate that the connection does not wish to receive
extended error data.

During the connection process, the client and server negotiate a TDS
version level for the connection. The TDS version level determines
which capabilities the connection will support.

After a connection is open, an application can:

• Retrieve request capabilities to find out what types of requests the
connection will support.

• Retrieve response capabilities to find out whether the server has
agreed to withhold the previously-indicated response types from
the connection.

Setting and Retrieving Multiple Capabilities

Gateway applications often need to set or retrieve all capabilities of a
type category with a single call to ct_capability. To do this, an application
calls ct_capability with:

• type as the type category of interest

• capability as CS_ALL_CAPS

• value as a CS_CAP_TYPE structure

Client-Library provides the following macros to enable an application
to set, clear, and test bits in a CS_CAP_TYPE structure:

• CS_SET_CAPMASK(mask, capability)

• CS_CLR_CAPMASK(mask, capability)

• CS_TST_CAPMASK(mask, capability)

where mask is a pointer to a CS_CAP_TYPE structure and capability is the
capability of interest.

Client-Library/C Reference Manual 2-35

Open Client Release 10.0 Client-Library Messages

Client-Library Messages

Client-Library message numbers are four bytes long. Each byte
contains a separate piece of information.

What the Bytes Represent

The first (high-order) byte represents the Client-Library layer that is
reporting the message. A typical application will not examine this byte
except to provide information for SYBASE Technical Support.

The second byte represents the message’s origin. A typical application
will not examine this byte except to provide information for SYBASE
Technical support.

The third byte represents the message’s severity. For a list of possible
severities, see Table 2-9: Client-Library message severities, on page 2-36.

The fourth (low-order) byte represents a layer-specific message
number.

Decoding a Message Number

Client-Library provides the following macros to help an application
decode a message number:

• CS_LAYER

• CS_ORIGIN

• CS_SEVERITY

• CS_NUMBER

These macros are defined in the header file cstypes.h.

A typical application uses these macros to split a message number into
four parts, which it then displays separately.

The client message callback example on page 2-18 demonstrates the
use of these macros.

2-36 Topics

Client-Library Messages Open Client Release 10.0

Message Severities

The following table lists Client-Library message severities:

Severity: Explanation: User Action:

CS_SV_INFORM No error has occurred. The
message is informational.

No action is required.

CS_SV_CONFIG_FAIL A SYBASE configuration
error has been detected.
Configuration errors
include missing localization
files, a missing interfaces
file, and an unknown server
name in the interfaces file.

Raise an error so that the application’s end-
user can correct the problem.

CS_SV_RETRY_FAIL An operation has failed, but
the operation can be retried.

An example of this type of
operation is a network read
that times out.

The return value from an application’s
client message callback determines whether
or not Client-Library retries the operation.

If the client message callback returns
CS_SUCCEED, Client-Library retries the
operation.

If the client message callback returns
CS_FAIL, Client-Library does not retry the
operation and marks the connection as
dead. In this case, call
ct_close(CS_FORCE_CLOSE) to close the
connection and then re-open it, if desired,
by calling ct_connect.

CS_SV_API_FAIL A Client-Library routine
generated an error. This
error is typically caused by
a bad parameter or calling
sequence. The server
connection is probably
salvageable.

Call ct_cancel(CS_CANCEL_ALL) to clean
up the connection. If
ct_cancel(CS_CANCEL_ALL) returns
CS_SUCCEED, the server connection is
unharmed. Note that it is illegal to perform
this type of cancel from within a client
message callback routine.

CS_SV_RESOURCE_FAIL A resource error has
occurred. This error is
typically caused by a malloc
failure or lack of file
descriptors. The server
connection is probably not
salvageable.

Call ct_close(CS_FORCE_CLOSE) to close
the server connection and then re-open it, if
desired, by calling ct_connect. Note that it is
illegal to make these calls from within a
client message callback routine.

Table 2-9: Client-Library message severities

Client-Library/C Reference Manual 2-37

Open Client Release 10.0 Client-Library Messages

CS_SV_COMM_FAIL An unrecoverable error in
the server communication
channel has occurred.

The server connection is not
salvageable.

Call ct_close(CS_FORCE_CLOSE) to close
the server connection and then re-open it, if
desired, by calling ct_connect. Note that it is
illegal to make these calls from within a
client message callback routine.

CS_SV_INTERNAL_FAIL An internal Client-Library
error has occurred.

Call ct_exit(CS_FORCE_EXIT) to exit Client-
Library, and then exit the application. Note
that it is illegal to call ct_exit from within a
client message callback routine.

CS_SV_FATAL A serious error has
occurred. All server
connections are unusable.

Call ct_exit(CS_FORCE_EXIT) to exit Client-
Library, and then exit the application. Note
that it is illegal to call ct_exit from within a
client message callback routine.

Severity: Explanation: User Action:

Table 2-9: Client-Library message severities (continued)

2-38 Topics

Commands Open Client Release 10.0

Commands

In the client/server model, a server accepts commands from multiple
clients and responds by returning data and other information to the
clients. SYBASE Open Client applications use Client-Library routines
to communicate commands to servers. For example, an application
might send a cursor open command to a server, directing it to execute
a SQL select statement.

The following table lists Client-Library routines that initiate
commands, together with the types of commands that each routine
initiates:

Sending a Command to a Server

In general, sending a command to a server is a four step process. To
send a command to a server, an application must:

1. Initiate the command by calling ct_command, ct_cursor, or ct_dynamic.
These routines set up internal structures that are used in building
a command stream to send to the server.

2. Pass parameters for the command (if required). Most applications
pass parameters by calling ct_param once for each parameter that
the command requires, but it is also possible to pass parameters
for a command by using ct_dyndesc.

Not all commands require parameters. For example, an RPC
command may or may not require parameters, depending on the
stored procedure being called. For information about which
commands require parameters, see the ct_param and ct_dyndesc
manual pages.

Client-Library routine: Initiates:

ct_command Miscellaneous commands, including language,
message, package, remote procedure call (RPC), and
send-data commands.

ct_cursor Cursor commands, including cursor declare, cursor
options, cursor rows, cursor open, cursor update,
cursor delete, cursor close, and cursor de-allocate.

ct_dynamic Dynamic commands, including cursor declare,
prepare, describe input, execute, describe output,
and de-allocate.

Table 2-10: Client-Library routines that initiate commands

Client-Library/C Reference Manual 2-39

Open Client Release 10.0 Commands

3. Send the command to the server by calling ct_send.

4. Verify the success of the command by calling ct_results.

➤ Note
Step 4 does not imply that an application need only call ct_results once. If the

value of ct_results’ result_type parameter indicates that there are fetchable

results, the application will most likely process the results using a loop

controlled by ct_results. See the Open Client Client-Library/C Programmer’s
Guide for a discussion of processing results.

Deciding Which Type of Command to Use

In some cases, different Client-Library commands actually do the
same thing. For example, an application might send an RPC command
to a server to direct it to execute a stored procedure, or it might send a
cursor command.

The following table lists common tasks as well as various Client-
Library routines that an application can use to accomplish them.

Task: Routines: Notes

Execute a statement
(with no variables)

ct_command(CS_LANG_CMD)
ct_send

ct_dynamic(CS_EXEC_IMMEDIATE)
ct_send

A select statement is not allowed.

Execute a statement
(with variables)

ct_command(CS_LANG_CMD)
ct_param
ct_send

ct_command(CS_RPC_CMD)
ct_param
ct_send

ct_cursor(CS_CURSOR_DECLARE)
ct_param
ct_cursor(CS_CURSOR_OPEN)
ct_param
ct_send

Table 2-11: Different Client-Library commands that accomplish the same tasks

2-40 Topics

Commands Open Client Release 10.0

Because an application can use different Client-Library commands to
accomplish the same task, it is not always easy to choose which
command type to use in an application.

The following sections contain information about each of the Client-
Library routines that initiate commands.

ct_dynamic(CS_PREPARE)
ct_dynamic(CS_EXECUTE)
ct_param
ct_send

Execute a SQL Server
stored procedure

ct_command(CS_RPC_CMD)
ct_send

*buffer is the name of the stored
procedure.

ct_command(CS_LANG_CMD)
ct_send

*buffer is an “execute
st_proc_name” statement.

Declare a cursor ct_command(CS_LANG_CMD)
ct_send

Declares a (language based)
cursor on a SQL statement.

ct_cursor(CS_CURSOR_DECLARE)
ct_send

Declares a (Client-Library based)
cursor on a SQL statement.

ct_dynamic(CS_PREPARE)
ct_dynamic(CS_CURSOR_DECLARE)
ct_send

Declares a (language based)
cursor on a prepared statement.

ct_dynamic(CS_PREPARE)
ct_dynamic(CS_CURSOR_DECLARE)
ct_cursor(CS_CURSOR_OPTION)
ct_send

Declares a (Client-Library based)
cursor on a prepared statement.

ct_cursor(CS_CURSOR_DECLARE)
ct_send

Declares a (Client-Library) cursor
on a SQL Server stored
procedure.

*text is an “execute
st_proc_name” statement.

ct_dynamic(CS_CURSOR_DECLARE)
ct_send

Declares a (language based)
cursor on a SQL Server stored
procedure.

*id is the identifier for the
“execute st_proc_name”
statement that was previously
prepared by a call to
ct_dynamic(CS_PREPARE).

Task: Routines: Notes

Table 2-11: Different Client-Library commands that accomplish the same tasks

Client-Library/C Reference Manual 2-41

Open Client Release 10.0 Commands

ct_command

This routine is unique for a number of reasons:

• It is the only one of the three command initiation routines that
initiates more than one kind of command.

• It is the only command initiation routine that accepts multiple
language statements at one time.

• It has the ability to send a command to execute a SQL Server stored
procedure either as a language command or as an RPC command.

• It provides the only means of inserting text and image data.

For information about RPC commands, see ‘‘Remote Procedure
Calls’’on page 2-160 and ‘‘RPC (remote procedure call) Commands’’
on page 3-56.

For information about text and image data, see ‘‘Text and Image’’ on
page 2-188 and ‘‘Send-Data Commands’’ on page 3-56.

ct_cursor

This routine allows you to create and use Client-Library-based
cursors. These are different from language-based cursors in that a
single server connection can support multiple open cursors, each
simultaneously processing its own result set.

In addition, an application can send commands to update or delete
rows in the underlying table(s) while actively fetching rows of a cursor
result set.

For information about Client-Library-based cursors, see ‘‘Cursors’’ on
page 2-59.

For information on using Client-Library to update previously-fetched
cursor rows, see the ct_keydata manual page.

ct_dynamic

This routine was designed for precompiler use, but it can offer a
Client-Library application the following advantages:

• The ability to send a command to execute a prepared statement
and reference the statement with a unique identifier.

2-42 Topics

Commands Open Client Release 10.0

A prepared statement is a statement that has been compiled and
stored with an identifier as a result of a ct_dynamic(CS_PREPARE)
call and a ct_send call.

An application typically prepares a statement if it plans to
execute the statement multiple times. Variables are particularly
useful in dynamic commands because they allow an application
to compile a statement once and change the values of the
statement’s variables each time it executes the statement.

• The ability to describe (with CS_DESCRIBE_OUTPUT) prepared
statement output before sending a command to execute the
statement.

• Less overhead and faster performance than ct_command, if the
statement is executed more than once. This benefit is specific to the
execution of SQL statements on a SQL Server.

All of the above advantages can also be realized using a stored
procedure and either language or RPC commands. Because of the
limitations of dynamic SQL, its use is discouraged. For a discussion of
the limitations of dynamic SQL functionality, see ‘‘Dynamic SQL’’ on
page 2-63.

Client-Library/C Reference Manual 2-43

Open Client Release 10.0 CS_BROWSEDESC Structure

CS_BROWSEDESC Structure

ct_br_column uses a CS_BROWSEDESC structure to return information
about a column returned as the result of a browse-mode select. This
information is useful when an application needs to construct a
language command to update browse-mode tables.

A CS_BROWSEDESC structure is defined as follows:

/*
** CS_BROWSEDESC
** The Client-Library browse column description
** structure.
*/
typedef struct _cs_browsedesc
{

CS_INT status;
CS_BOOL isbrowse;
CS_CHAR origname[CS_MAX_NAME];
CS_INT orignlen;
CS_INT tablenum;
CS_CHAR tablename[CS_OBJ_NAME];
CS_INT tabnlen;

} CS_BROWSEDESC;

where:

status is a bit mask of the following symbols, or-ed together:

CS_EXPRESSION to indicate the column is the result of an
expression, for example, “sum*2” in the query “select sum*2
from areas”.

CS_HIDDEN to indicate that the column is a “hidden” column that
has been exposed. For more information, see CS_HIDDEN_KEYS on
the Properties topics page.

CS_KEY to indicate that the column is a key column. For more
information, see the ct_keydata manual page.

CS_RENAMED to indicate that the column’s heading is not the
original name of the column. Columns will have a different
heading from the column name in the data base if they are the
result of a query of the form “select Author = au_lname from
authors”.

isbrowse indicates whether or not the column can be browse-mode
updated.

2-44 Topics

CS_BROWSEDESC Structure Open Client Release 10.0

A column can be updated if it is not the result of an expression
and if it belongs to a browsable table. A table is browsable if it
has a unique index and a timestamp column.

isbrowse is set to CS_TRUE if the column can be updated and
CS_FALSE if it cannot.

origname is the original name of the column in the database. origname is
a null-terminated string.

Any updates to a column must refer to it by its original name,
not the heading that may have been given the column in a select
statement.

orignlen is the length, in bytes, of origname.

tablenum is the number of the table to which the column belongs. The
first table in a select statement’s from-list is table number 1, the
second number 2, and so forth.

tablename is the name of the table to which the column belongs.
tablename is a null-terminated string.

tabnlen is the length, in bytes, of tablename.

Client-Library/C Reference Manual 2-45

Open Client Release 10.0 CS_CLIENTMSG Structure

CS_CLIENTMSG Structure

A CS_CLIENTMSG structure contains information about a Client-
Library error or informational message.

Client-Library uses a CS_CLIENTMSG structure in two ways:

• For connections using the callback method to handle messages, a
CS_CLIENTMSG is the third parameter that Client-Library passes to
an application’s client message callback routine.

• For connections handling messages in-line, ct_diag can return
information in a CS_CLIENTMSG.

For information on error and message handling, see ‘‘Error and
Message Handling’’ on page 2-74.

For information on Client-Library messages, see ‘‘Client-Library
Messages’’ on page 2-35.

A CS_CLIENTMSG structure is defined as follows:

/*
** CS_CLIENTMSG
** The Client-Library client message structure.
*/

typedef struct _cs_clientmsg
{

CS_INT severity;
CS_MSGNUM msgnumber;
CS_CHAR msgstring[CS_MAX_MSG];
CS_INT msgstringlen;

/*
** If the error involved the operating
** system, the following fields contain
** operating-system-specific information:
*/
CS_INT osnumber;
CS_CHAR osstring[CS_MAX_MSG];
CS_INT osstringlen;

2-46 Topics

CS_CLIENTMSG Structure Open Client Release 10.0

/*
** Other information:
*/
CS_INT status;
CS_BYTE sqlstate[CS_SQLSTATE_SIZE];
CS_INT sqlstatelen;

} CS_CLIENTMSG;

where:

severity is a symbolic value representing the severity of the message.
The following table lists the legal values for severity:

Severity: Explanation:

CS_SV_INFORM No error has occurred. The message is
informational.

CS_SV_CONFIG_FAIL A SYBASE configuration error has been detected.
Configuration errors include missing localization
files, a missing interfaces file, and an unknown
server name in the interfaces file.

CS_SV_RETRY_FAIL An operation has failed, but the operation can be
retried.

An example of this type of operation is a network
read that times out.

CS_SV_API_FAIL A Client-Library routine generated an error. This
error is typically caused by a bad parameter or
calling sequence. The server connection is probably
salvageable.

CS_SV_RESOURCE_FAIL A resource error has occurred. This error is
typically caused by a malloc failure or lack of file
descriptors. The server connection is probably not
salvageable.

CS_SV_COMM_FAIL An unrecoverable error in the server
communication channel has occurred.

The server connection is not salvageable.

CS_SV_INTERNAL_FAIL An internal Client-Library error has occurred.

CS_SV_FATAL A serious error has occurred. All server
connections are unusable.

Table 2-12: Values for severity (CS_CLIENTMSG)

Client-Library/C Reference Manual 2-47

Open Client Release 10.0 CS_CLIENTMSG Structure

msgnumber is the Client-Library message number. For information on
how to interpret this number, see the Client-Library Messages topics
page, 2-35.

msgstring is the null-terminated Client-Library message string.

msgstring is the Client-Library message string.

If an application is not sequencing messages, msgstring is
guaranteed to be null-terminated, even if it has been truncated.

If an application is sequencing messages, msgstring is null-termi-
nated only if it is the last chunk of a sequenced message.

For more information on sequenced messages, see ‘‘Sequencing
Long Messages’’ on page 2-77.

msgstringlen is the length, in bytes, of msgstring. This is always the
actual length, never the symbolic value CS_NULLTERM.

osnumber is the operating system error number, if any. Client-Library
sets osnumber to 0 if no operating system error has occurred.

osstring is the null-terminated operating system error string, if any.

osstringlen is the length of osstring. This is always the actual length,
never the symbolic value CS_NULLTERM.

status is a bitmask used to indicate various types of information, such
as whether or not this is the first, a middle, or the last chunk of an
error message. The following table lists the values that can be
present in status:

Symbolic Value: To Indicate:

CS_FIRST_CHUNK The message text contained in msgstring is the first
chunk of the message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are
both on, then msgstring contains the entire
message.

If neither CS_FIRST_CHUNK nor
CS_LAST_CHUNK is on, then msgstring contains
a middle chunk of the message.

For more information on sequenced messages, see
‘‘Sequencing Long Messages’’ on page 2-77.

Table 2-13: Values for status (CS_CLIENTMSG)

2-48 Topics

CS_CLIENTMSG Structure Open Client Release 10.0

sqlstate is a byte string describing the error.

Not all client messages have SQL state values associated with
them. If no SQL state value is associated with a message, sqlstate
has the value “ZZZZZ”.

sqlstatelen is the length, in bytes, of the sqlstate string.

CS_LAST_CHUNK The message text contained in msgstring is the last
chunk of the message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are
both on, then msgstring contains the entire
message.

If neither CS_FIRST_CHUNK nor
CS_LAST_CHUNK is on, then msgstring contains
a middle chunk of the message.

For more information on sequenced messages, see
‘‘Sequencing Long Messages’’ on page 2-77.

Symbolic Value: To Indicate:

Table 2-13: Values for status (CS_CLIENTMSG) (continued)

Client-Library/C Reference Manual 2-49

Open Client Release 10.0 CS_DATAFMT Structure

CS_DATAFMT Structure

A CS_DATAFMT structure is used to describe data values and program
variables. For example:

• ct_bind requires a CS_DATAFMT structure to describe a destination
variable.

• ct_describe returns a CS_DATAFMT structure to describe a result data
item.

• ct_param requires a CS_DATAFMT to describe an input parameter.

• cs_convert requires CS_DATAFMT structures to describe source and
destination data.

Most routines use only a subset of the fields in a CS_DATAFMT. For
example, ct_bind does not use the name, status, and usertype fields, and
ct_describe does not use the format field. For information on which fields
in the CS_DATAFMT a routine uses, see the manual page for the routine.

A CS_DATAFMT structure is defined as follows:

typedef struct _cs_datafmt
{

CS_CHAR name[CS_MAX_NAME]; /* Name of data */
CS_INT namelen; /* Length of name */
CS_INT datatype; /* Data’s datatype */
CS_INT format; /* Format symbols */
CS_INT maxlength; /* Data max length */
CS_INT scale; /* Scale of data */
CS_INT precision; /* Data precision */
CS_INT status; /* Status symbols */

/*
** The following field indicates the number of
** rows to copy, per ct_fetch call, to a bound
** program variable. ct_describe sets this field
** to a default value of 1. ct_bind is the only
** routine that reads this field.
*/
CS_INT count;

2-50 Topics

CS_DATAFMT Structure Open Client Release 10.0

/*
** These fields are used to support SQL Server
** user-defined datatypes and international
** datatypes:
*/
CS_INT usertype; /* Svr user-def’d type */
CS_LOCALE *locale; /* Locale information */

} CS_DATAFMT;

where:

name is the name of the data. name is often a column or parameter
name.

namelen is the length, in bytes, of name. Set namelen to CS_NULLTERM to
indicate a null-terminated name. Set namelen to 0 to if name is NULL.

datatype is a type constant representing the datatype of the data. This is
either one of the Open Client datatypes listed on the Types topics
page, or an Open Client user-defined datatype. For information on
user-defined datatypes, see the Types topics page.

Do not confuse the datatype field with the usertype field. datatype
is always used to describe the Open Client datatype of the data.
usertype is only used if the data has a SQL Server user-defined
datatype in addition to an Open Client datatype.

For example, the following SQL Server command creates the
SQL Server user-defined type birthday:

sp_addtype birthday, datetime

and this command creates a table containing a column of the
new type:

create table birthdays
(

name varchar(30),
happyday birthday

)

If a Client-Library application executes a select against this table
and calls ct_describe to get a description of the birthday column in
the result set, the datatype and usertype fields in the CS_DATAFMT
structure are set as follows:

datatype is set to CS_DATETIME_TYPE.
usertype is set to the SQL Server id for the type birthday.

Client-Library/C Reference Manual 2-51

Open Client Release 10.0 CS_DATAFMT Structure

format describes the destination format of character or binary data.
format is a bit mask of the following symbols, or’ed together:

maxlength can represent various lengths, depending on which Open
Client routine is using the CS_DATAFMT. The following table lists
the meanings of maxlength:

scale is the scale of the data. scale is used only with decimal or numeric
datatypes.

At the current time, legal values for scale are from 0 to 77. The
default scale is 0. CS_MIN_SCALE, CS_MAX_SCALE, and
CS_DEF_PREC define the minimum, maximum, and default scale
values, respectively.

To indicate that destination data should use the same scale as the
source data, set scale to CS_SRC_VALUE.

scale must be less than or equal to precision.

Symbol: To Indicate: Notes:

CS_FMT_NULLTERM The data should be null-
terminated.

For character
or text data.

CS_FMT_PADBLANK The data should be padded with
blanks to the full length of the
destination variable.

For character
or text data.

CS_FMT_PADNULL The data should be padded with
NULLs to the full length of the
destination variable.

For character,
text, binary or
image data.

CS_FMT_UNUSED No format information is being
provided.

For all data
types.

Table 2-14: Values for format (CS_DATAFMT)

Open Client routine: maxlength is:

ct_bind The length of the bind variable.

ct_describe The maximum possible length of the column or
parameter being described.

ct_param The maximum desired length of return parameter data.

cs_convert The length of the source data and the length of the
destination buffer space.

Table 2-15: Meaning of maxlength (CS_DATAFMT)

2-52 Topics

CS_DATAFMT Structure Open Client Release 10.0

precision is the precision of the data. precision is used only with decimal
or numeric datatypes.

At the current time, legal values for precision are from 1 to 77.
The default precision is 18. CS_MIN_PREC, CS_MAX_PREC, and
CS_DEF_PREC define the minimum, maximum, and default
precision values, respectively.

To indicate that destination data should use the same precision
as the source data, set precision to CS_SRC_VALUE.

precision must be greater than or equal to scale.

status is a bit mask used to indicate various types of information. The
following table lists the values that can make up status:

Symbolic Value: To Indicate: Value is Legal
For:

CS_CANBENULL The column can contain NULL
values.

ct_describe,
ct_dyndesc

CS_HIDDEN The column is a “hidden”
column that has been exposed.

For more information, see the
CS_HIDDEN_KEYS on the
Properties topics page.

ct_describe,
ct_dyndesc

CS_IDENTITY The column is an identity
column.

ct_describe,
ct_dyndesc

CS_KEY The column is a key column.

For more information, see the
manual page for ct_keydata.

ct_describe,
ct_dyndesc

CS_UPDATABLE The column is an updatable
cursor column.

ct_describe,
ct_dyndesc

CS_VERSION_KEY The column is part of the
version key for the row.

SQL Server uses version keys
for positioning cursors.

For more information, see the
manual page for ct_keydata.

ct_describe,
ct_dyndesc

Table 2-16: Values for status (CS_DATAFMT)

Client-Library/C Reference Manual 2-53

Open Client Release 10.0 CS_DATAFMT Structure

count is the number of rows to copy to program variables per ct_fetch
call. count is used only by ct_bind.

usertype is the server user-defined datatype, if any, of data returned by
the server. usertype is used only for server user-defined types, not
for Client-Library user-defined types. For a discussion of Client-
Library user-defined types, see the Types topics page.

locale is a pointer to a CS_LOCALE structure containing localization
information. Set locale to NULL if localization information is not
required.

Before using a CS_DATAFMT structure, make sure that locale is
valid either by setting it to NULL or to the address of a valid
CS_LOCALE structure.

CS_TIMESTAMP The column is a timestamp
column. An application uses
timestamp columns when
performing browse-mode
updates.

ct_describe

CS_UPDATECOL The parameter is the name of a
column in the update clause of
a cursor declare command.

ct_param,
ct_dyndesc

CS_INPUTVALUE The parameter is an input
parameter value for a Client-
Library command.

ct_param,
ct_dyndesc

CS_RETURN The parameter is a return
parameter to an RPC
command.

ct_param,
ct_dyndesc

Symbolic Value: To Indicate: Value is Legal
For:

Table 2-16: Values for status (CS_DATAFMT) (continued)

2-54 Topics

CS_IODESC Structure Open Client Release 10.0

CS_IODESC Structure

A CS_IODESC, also called an “I/O descriptor structure,” describes text
or image data.

An application calls ct_data_info to retrieve a CS_IODESC structure after
retrieving a text or image value that it plans to update at a later time.

Once it has a valid CS_IODESC, a typical application will change only
the values of the locale, total_txtlen, and log_on_update fields before
using the CS_IODESC to update the text or image value.

An application calls ct_data_info to define a CS_IODESC structure after
calling ct_command to initiate a send-data operation to update a text or
image value.

A CS_IODESC is defined as follows:

typedef struct _cs_iodesc
{

CS_INT iotype; /* CS_IODATA */
CS_INT datatype; /* Text or image. */
CS_LOCALE *locale; /* Locale information. */
CS_INT usertype; /* User-defined type. */
CS_INT total_txtlen; /* Total data length. */
CS_INT offset; /* Reserved. */
CS_BOOL log_on_update; /* Log the insert? */
CS_CHAR name[CS_OBJ_NAME]; /* Name of data object.*/
CS_INT namelen; /* Length of name. */
CS_BYTE timestamp[CS_TS_SIZE]; /* SQL Server id. */
CS_INT timestamplen; /* Length of timestamp.*/
CS_BYTE textptr[CS_TP_SIZE]; /* SQL Server ptr. */
CS_INT textptrlen; /* Length of textptr. */

} CS_IODESC;

where:

iotype indicates the type of I/O to perform. For text and image opera-
tions, iotype always has the value CS_IODATA.

datatype is the datatype of the data object. The only legal values for
datatype are CS_TEXT_TYPE and CS_IMAGE_TYPE.

locale is a pointer to a CS_LOCALE structure containing localization
information for the text or image value. Set locale to NULL if local-
ization information is not required.

Before using a CS_IODESC structure, make sure that locale is valid
either by setting it to NULL or to the address of a valid CS_LOCALE
structure.

Client-Library/C Reference Manual 2-55

Open Client Release 10.0 CS_IODESC Structure

usertype is the SQL Server user-defined datatype of the data object, if
any. On send-data operations, usertype is ignored. On get-data
operations, Client-Library sets usertype in addition to (not instead
of) datatype.

total_textlen is the total length, in bytes, of the text or image value.

offset is reserved for future use.

log_on_update describes whether the server should log the update to
this text or image value.

name is the name of the text or image column. name is a null-terminated
string of the form table.column.

namelen is the length, in bytes, of name (not including the null termi-
nator). When filling in a CS_IODESC, an application can set namelen
to CS_NULLTERM to indicate a null-terminated name.

timestamp is the text timestamp of the column. A text timestamp marks
the time of a text or image column’s last modification.

timestamplen is the length, in bytes, of timestamp.

textptr is the text pointer for the column. A text pointer is an internal
server pointer that points to the data for a text or image column.
textptr identifies the target column in a send-data operation.

textptrlen is the length, in bytes, of textptr.

2-56 Topics

CS_SERVERMSG Structure Open Client Release 10.0

CS_SERVERMSG Structure

A CS_SERVERMSG structure contains information about a server error
or informational message.

Client-Library uses a CS_SERVERMSG structure in two ways:

• For connections using the callback method to handle messages, a
CS_SERVERMSG is the third parameter that Client-Library passes to
the connection’s server message callback.

• For connections handling messages in-line, ct_diag can return
information in a CS_SERVERMSG.

For information on error and message handling, see ‘‘Error and
Message Handling’’ on page 2-74.

A CS_SERVERMSG structure is defined as follows:

/*
** CS_SERVERMSG
** The Client-Library server message structure.
*/

typedef struct _cs_servermsg
{

CS_MSGNUM msgnumber;
CS_INT state;
CS_INT severity;
CS_CHAR text[CS_MAX_MSG];
CS_INT textlen;
CS_CHAR svrname[CS_MAX_NAME];
CS_INT svrnlen;

/*
** If the error involved a stored procedure,
** the following fields contain information
** about the procedure:
*/
CS_CHAR proc[CS_MAX_NAME];
CS_INT proclen;
CS_INT line;

/*
** Other information.
*/
CS_INT status;
CS_BYTE sqlstate[CS_SQLSTATE_SIZE];
CS_INT sqlstatelen;

} CS_SERVERMSG;

Client-Library/C Reference Manual 2-57

Open Client Release 10.0 CS_SERVERMSG Structure

where:

msgnumber is the server message number. For a list of SQL Server
messages, execute the Transact-SQL command:

select * from sysmessages

state is the server error state.

severity is the severity of the message. For a list of SQL Server message
severities, execute the Transact-SQL command:

select distinct severity from sysmessages

text is the text of the server message.

If an application is not sequencing messages, text is guaranteed
to be null-terminated, even if it has been truncated.

If an application is sequencing messages, text is null-terminated
only if it is the last chunk of a sequenced message.

For more information on sequenced messages, see ‘‘Sequencing
Long Messages’’ on page 2-77.

textlen is the length, in bytes, of text. This is always the actual length,
never the symbolic value CS_NULLTERM.

svrname is the name of the server that generated the message. This is
the name of the server as it appears in the interfaces file. svrname is
a null-terminated string.

svrnlen is the length, in bytes, of svrname.

proc is the name of the stored procedure which caused the message, if
any. proc is a null-terminated string.

proclen is the length, in bytes, of proc.

line is the line number, if any, of the line that caused the message. line
can be a line number in a stored procedure or a line number in a
command batch.

2-58 Topics

CS_SERVERMSG Structure Open Client Release 10.0

status is a bitmask used to indicate various types of information, such
as whether or not extended error data is included with the
message. The following table lists the values that can be present in
status:

sqlstate is a byte string describing the error.

Not all server messages have SQL state values associated with
them. If no SQL state value is associated with a message, sqlstate
has the value “ZZZZZ”.

sqlstatelen is the length, in bytes, of the sqlstate string.

Symbolic Value: To Indicate:

CS_HASEED Extended error data is included with the message.

For more information on extended error data, see
‘‘Extended Error Data’’ on page 2-79.

CS_FIRST_CHUNK The message text contained in text is the first
chunk of the message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are
both on, then text contains the entire message.

If neither CS_FIRST_CHUNK nor
CS_LAST_CHUNK is on, then text contains a
middle chunk of the message.

For more information on sequenced messages, see
‘‘Sequencing Long Messages’’ on page 2-77.

CS_LAST_CHUNK The message text contained in text is the last
chunk of the message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are
both on, then text contains the entire message.

If neither CS_FIRST_CHUNK nor
CS_LAST_CHUNK is on, then text contains a
middle chunk of the message.

For more information on sequenced messages, see
‘‘Sequencing Long Messages’’ on page 2-77.

Table 2-17: Values for status (CS_SERVERMSG)

Client-Library/C Reference Manual 2-59

Open Client Release 10.0 Cursors

Cursors

A cursor is a symbolic name that is associated with one of the
following SQL statements:

• A SQL select statement

• A Transact-SQL execute statement

The stored procedure being executed can contain only a single
SQL select statement.

• A dynamic SQL prepared statement where the statement can be
either:

- A SQL select statement

- A Transact-SQL execute statement

The stored procedure being executed can contain only a single
SQL select statement.

The SQL statement associated with a cursor is called the body of the
cursor.

Client-Library allows an application to declare and manipulate a
cursor as either a language cursor (using ct_command) or a Client-
Library cursor (using ct_cursor).

Both language cursors and Client-Library cursors can be used to send
commands to SYBASE SQL Servers and Open Server applications.

A language cursor cannot be manipulated using ct_cursor; likewise, a
Client-Library cursor cannot be manipulated using ct_command.

Language Cursors

Declaring Language Cursors

An application creates a language cursor by initiating a call to
ct_command(CS_LANG_CMD) and specifying a cursor declare statement.
For an application accessing SQL Server, the cursor declare statement
would be a declare cursor command.

An application can declare one or more language cursors using the
same or different command structures. The association between a
language cursor and a command structure is short-lived: from the
time at which a command is initiated (ct_command(CS_LANG_CMD))
until the command results are fully processed.

2-60 Topics

Cursors Open Client Release 10.0

The following commands use Transact-SQL to declare two language
cursors, specify their cursor rows settings, and open them, all in the
same command structure space.

strcpy(buf, “declare A cursor for select * from \
A_Table \

set cursor rows 10 for A \
declare B cursor for select * from \

B_Table \
set cursor rows 5 for B \
open A \
open B”);

ct_command(cmd, CS_LANG_CMD, buf, CS_NULLTERM,
CS_UNUSED);

ct_send(cmd);

For detailed information about ct_command, see the ct_command manual
page.

Regular Row Result Sets

Language cursors generate regular row result sets when an
application fetches against them:

strcpy(buf2, “fetch A \
 fetch B”);

ct_command(cmd, CS_LANG_CMD, buf2, CS_NULLTERM,
CS_UNUSED);

ct_send(cmd);

The number of rows returned to Client-Library per fetch command is
equal to the current “cursor rows” setting for the cursor: 10 for cursor
A and 5 for cursor B, in this case. It is useful to refer to this portion of
the result set as a buffer’s worth of rows. The application fetches the
rows from Client-Library by making calls to ct_fetch.

Fetching From Regular Row Result Sets

An application can simultaneously fetch from multiple regular row
result sets. It must, however, completely process the buffer’s worth of
rows returned by a cursor’s fetch command before it attempts to fetch
rows from another cursor’s result set. A buffer’s worth of rows has
been completely processed when the value returned from ct_fetch is
CS_END_DATA.

Client-Library/C Reference Manual 2-61

Open Client Release 10.0 Cursors

An application can update or delete the most recently fetched row
while fetching from a regular row result set. The modification is
propagated back to the underlying database table.

Client-Library Cursors

Declaring Client-Library Cursors

An application creates a Client-Library cursor by initiating a call to
ct_cursor(CS_CURSOR_DECLARE).

Unlike language cursors, each Client-Library cursor must be declared
using a different command structure. All operations on the same
Client-Library cursor, from its declaration to its de-allocation, must
reference the same unique command structure.

The following commands use Transact-SQL to declare two Client-
Library cursors and specify their cursor rows settings. The commands
for each cursor use different command structures.

ct_cursor(cmd, CS_CURSOR_DECLARE, A, CS_NULLTERM,
cursor_body, CS_NULLTERM, CS_FOR_UPDATE);

ct_cursor(cmd, CS_CURSOR_ROWS, NULL, CS_UNUSED,
NULL, CS_UNUSED, 5);

ct_send(cmd);

ct_cursor(cmd2, CS_CURSOR_DECLARE, B, CS_NULLTERM,
cursor_body2, CS_NULLTERM, CS_FOR_UPDATE);

ct_cursor(cmd2, CS_CURSOR_ROWS, NULL, CS_UNUSED,
NULL, CS_UNUSED, 10);

ct_send(cmd2);

For detailed information about ct_cursor, see the ct_cursor manual page.

Cursor Result Sets

Client-Library cursors generate cursor result sets when an application
makes calls to ct_cursor(CS_CURSOR_OPEN) to initiate commands to
open the cursors.

ct_cursor(cmd, CS_CURSOR_OPEN, NULL, CS_UNUSED,
NULL, CS_UNUSED, CS_UNUSED);

ct_send(cmd);

ct_cursor(cmd2, CS_CURSOR_OPEN, NULL, CS_UNUSED,
NULL, CS_UNUSED, CS_UNUSED);

2-62 Topics

Cursors Open Client Release 10.0

ct_send(cmd2);

The number of rows returned to Client-Library per internal fetch
command is equal to the current “cursor rows” setting for the cursor:
10 for cursor A and 5 for cursor B, in this case. The application fetches
the rows from Client-Library by making calls to ct_fetch.

Fetching From Cursor Result Sets

An application can simultaneously fetch from multiple cursor result
sets. Unlike language cursors, an application does not need to
completely process the buffer’s worth of rows returned on a Client-
Library cursor before it fetches rows from another cursor’s result set.

Also, while a language cursor can only be used to delete or update the
most recently fetched row, a Client-Library cursor can be used to
modify any previously fetched row. This modification is propagated
back to the underlying database table.

For information about using Client-Library to modify previously
fetched cursor rows, see the ct_keydata manual page.

Language Cursor and Client-Library Cursor Interaction

Language cursors and Client-Library cursors can share the same
connection structure. The implication of this is that whenever a
language cursor sends a fetch command, all other cursors (including
the Client-Library cursors) sharing the same connection are blocked
until the application processes the buffer’s worth of regular rows
returned.

Where to Go for More Information

For detailed information on the routines that initiate language and
Client-Library cursor commands, see the manual pages for ct_command
and ct_cursor.

For information on how to declare and manipulate Client-Library
cursors , see the Open Client Client-Library/C Programmer’s Guide.

For information on how cursors are implemented in 10.0 SQL Server,
see the SQL Server Reference Manual.

For information on how cursors are supported by 10.0 Open Server,
see the Open Server Server-Library Reference Manual.

Client-Library/C Reference Manual 2-63

Open Client Release 10.0 Dynamic SQL

Dynamic SQL

Dynamic SQL is primarily useful for precompiler support, but it can
also be used by interactive applications that do either of the following:

• Generate SQL statements based on information provided by an
end-user

• Allow end-users to create whole or partial SQL statements

What is Dynamic SQL?

Dynamic SQL is the process of generating, preparing, and executing
SQL statements at run-time.

Dynamic SQL addresses a number of issues, namely:

• The need to execute SQL statements whose text is not known prior
to run-time.

It would be difficult to anticipate all of the SQL statements that
an end user might want to execute. An application can benefit
from dynamically constructing SQL statements, binding variable
values, and executing the statements, all at run-time.

• The efficiency of preparing a ‘generic’ SQL statement once and
executing it multiple times, each time changing the values of its
host variables.

Preparing a SQL statement is analogous to compiling an appli-
cation; the syntax of the SQL statement is checked and the DBMS
has an opportunity to optimize the SQL statements, deciding on
query plans and storing those plans in anticipation of later appli-
cation execution.

• The advantage of referencing a prepared SQL statement with an
identifier.

• The need to create one or more cursors at run-time to handle
multiple-row access.

Limitations of Dynamic SQL

Dynamic SQL has some significant limitations.

2-64 Topics

Dynamic SQL Open Client Release 10.0

Performance

Dynamic SQL generally performs poorer than static SQL, the term for
SQL when it is embedded into an application. When you compile an
embedded SQL application, SQL statement preparation and
optimization is performed as well. The overhead incurred by these
impacts the application developer, not the end-user.

A dynamic SQL application, on the other hand, incurs the overhead of
SQL statement preparation and optimization at run-time, which
affects the end-user.

ANSI Cursor Restriction

A dynamic SQL application using Transact-SQL cursors or Client-
Library cursors (as opposed to language cursors) is subject to the
following restriction.

By ANSI definition, a cursor is associated with a single result set, and
thus, a single SQL statement. This means that a dynamic SQL
prepared statement can only be either:

• A SQL select statement

or a:

• A Transact-SQL execute statement

The stored procedure being executed can contain only a single
SQL select statement.

SQL Server Restrictions

SQL Server implements dynamic SQL using temporary stored
procedures. A temporary stored procedure is created when a SQL
statement is prepared, and destroyed when that prepared statement is
de-allocated. De-allocation can occur either explicitly with a
ct_dynamic(CS_DEALLOC) call or implicitly when a connection is closed.

As a consequence of this implementation, an application accessing
SQL Server and using dynamic SQL is subject to the restrictions of
SQL Server stored procedures. Some of the implications of this are:

• Temporary tables are destroyed when the prepared statement is
de-allocated.

• Parameters of text and image datatypes are not supported.

• The maximum number of parameters supported is 255.

See the Transact-SQL User’s Guide for a complete discussion of stored
procedures.

Client-Library/C Reference Manual 2-65

Open Client Release 10.0 Dynamic SQL

Dynamic SQL Implementation

There are two ways to dynamically execute SQL statements. One is to
perform the prepare and execute operations in one step, and the other
is to perform the prepare and execute operations separately.

Preparing a SQL statement consists of:

• Parsing - checking the statement’s syntax and verifying the names
of the specified columns and tables against the system catalog

• Optimizing - determining the data access path (execution plan), if
possible

• Generating execution code

Executing a SQL statement is what actually makes things happen:
rows are added by an insert statement, removed by a delete statement,
changed by an update statement, or retrieved by a select statement.

The following sections discuss the two methods, and the
circumstances in which an application would choose one method over
the other.

Execute Immediate

The execute immediate method performs the prepare and execute
operations in one step. A dynamic SQL statement can be executed
immediately if it meets the following criteria:

• It does not return data (it is not a select statement).

• It does not contain dynamic parameter markers (?’s).

Dynamic parameter markers act as placeholders that allow users
to specify actual data to be substituted into a SQL statement at
run-time.

• The application will execute it only once.

Using the execute immediate method, an application can execute
a literal SQL statement more than once, but this is discouraged
since it incurs the overhead associated with statement prepa-
ration each time it executes the statement.

Prepare and Execute

The execute and prepare method performs the prepare and execute
operations separately. An application must use this method if the
dynamic SQL statement meets any of the following criteria:

• It returns data.

2-66 Topics

Dynamic SQL Open Client Release 10.0

• It contains dynamic parameter markers (?’s).

and it should use this method if:

• The application will execute it multiple times.

Using the prepare and execute method, an application incurs the
overhead associated with statement preparation only once:
when it prepares the statement. Each execution of the statement
thereafter costs nothing in terms of overhead.

Separating the prepare and execute operations offers an application
the following advantages over the execute immediate method:

• It allows select statements to be executed.

• It increases the performance of statements which are executed
more than once.

• It provides the application with an opportunity to describe
prepared statement input values.

Execute Immediate

To execute a literal, non-query, dynamic SQL statement:

1. Store the text of the dynamic SQL statement in a character string
host variable.

2. Call ct_dynamic with type as CS_EXEC_IMMEDIATE to initiate a
command to execute the statement.

3. Call ct_send to send the command to the server.

4. Call ct_results and examine the value of the *result_type parameter
to determine whether the command succeeded
(CS_CMD_SUCCEED) or failed (CS_CMD_FAIL).

Prepare and Execute

Preparing and executing a dynamic SQL statement is more complex
than performing an execute immediate operation. The steps are:

• Prepare the dynamic SQL statement.

• Get a description of prepared statement input, if necessary.

• Get a description of prepared statement output, if necessary.

• Execute the prepared statement or declare and open a cursor on the
prepared statement.

Client-Library/C Reference Manual 2-67

Open Client Release 10.0 Dynamic SQL

• Process results, if necessary.

• De-allocate the prepared statement.

Preparing a Statement

When an application prepares a dynamic SQL statement separately
from executing it, these additional tasks are performed during the
prepare operation:

• The statement is associated with an identifier for easy access.

• The compiled statement is stored on the server for later execution.

To prepare a dynamic SQL statement:

1. Store the text of the statement in a character string host variable,
for example:

char *query = “select type, title, price
from titles
where title_id = ?”

The SQL statement may include one or more dynamic parameter
markers that act as placeholders. A placeholder is represented
by a “?” character. Placeholders can be specified:

- For one or more columns in a select list

- For one or more values in an insert statement

- In the set clause of an update statement

- In a where clause of a select or update statement

At execution time, the application must substitute a value for
each dynamic parameter marker.

2. Call ct_dynamic with type as CS_PREPARE to initiate a command to
prepare the statement.

To initiate a command to prepare the above SQL statement:

ct_dynamic(cmd, CS_PREPARE, “myid”, CS_NULLTERM,
query, CS_NULLTERM);

To initiate a command to prepare a statement that executes a
stored procedure, specify “exec sp_name” as the SQL text, where
sp_name is the actual name of the stored procedure to be
executed:

ct_dynamic(cmd, CS_PREPARE, “myid”, CS_NULLTERM,
“exec sp_2”, CS_NULLTERM);

3. Call ct_send to send the command to the server.

2-68 Topics

Dynamic SQL Open Client Release 10.0

4. Call ct_results as necessary to process the results of the command.
A successful CS_PREPARE command will generate a
CS_CMD_SUCCEED result.

Getting a Description of Prepared Statement Input

If a SQL statement contains any dynamic parameter markers, it is
often useful for an application to get a description from the server of
the values to be input. This description includes the number of input
values, as well as their data types, lengths, and so on. The application
can then use this information to prompt the end user for input values.
After prompting for input values, it can pass those values to the
prepared statement just prior to executing the statement.

To get a description of prepared statement input:

1. Call ct_dynamic with type as CS_DESCRIBE_INPUT to initiate a
command to get the description.

2. Call ct_send to send the command to the server.

3. Call ct_results as necessary to process the results of the command.
A CS_DESCRIBE_INPUT command generates a result set of type
CS_DESCRIBE_RESULT. This result set contains no fetchable data but
does contain descriptive information for each of the input values.

4. Call ct_res_info to get the number of input values. This assumes that
CS_DESCRIBE_RESULT was returned, as does the following step.

5. For each input value, call ct_describe. Increment the value of the
item parameter by 1 with each call.

Alternately, an application can use a dynamic SQL descriptor area to
hold the description of the prepared statement input. If this is the case,
the following steps replace those specified above:

1. Call ct_dyndesc with operation as CS_ALLOC to allocate a descriptor
area.

2. Call ct_dynamic with type as CS_DESCRIBE_INPUT to initiate the
command to get the description.

3. Call ct_send to send the command to the server.

4. Call ct_results as necessary to process the results of the command.
A CS_DESCRIBE_INPUT command generates a result set of type
CS_DESCRIBE_RESULT. This result set contains no fetchable data but
does contain descriptive information for each of the input values.

Client-Library/C Reference Manual 2-69

Open Client Release 10.0 Dynamic SQL

5. Call ct_dyndesc with operation as CS_USE_DESC to associate the
prepared statement with the descriptor area allocated in step 1.
This assumes that CS_DESCRIBE_RESULT was returned, as do the
following two steps.

6. Call ct_dyndesc with operation as CS_GETCNT to get the number of
input values.

7. For each input value, call ct_dyndesc with operation as CS_GETATT to
get the value’s description.

The first method (not using a dynamic SQL descriptor area) is
recommended since performance is better and it is consistent with the
way in which results are processed for non-dynamic SQL statements
as well.

Getting a Description of Prepared Statement Output

If the dynamic SQL statement is a select statement and the select list was
not known prior to run-time, the application must get a description of
the prepared statement output before processing the results.

For example, a forms-based application that processes interactive SQL
queries needs to determine result column types and lengths in order to
display output.

To get a description of prepared statement output columns:

1. Call ct_dynamic with type as CS_DESCRIBE_OUTPUT to initiate a
command to get the description.

2. Call ct_send to send the command to the server.

3. Call ct_results as necessary to process the results of the command.
A ct_dynamic(CS_DESCRIBE_OUTPUT) command generates a result
set of type CS_DESCRIBE_RESULT. This result set contains no
fetchable data but does contain descriptive information for each of
the output columns.

4. Call ct_res_info to get the number of output columns. This assumes
that CS_DESCRIBE_RESULT was returned, as does the following step.

5. For each output column, call ct_describe. Increment the value of the
item parameter by 1 with each call.

Alternately, an application can use a dynamic SQL descriptor area to
hold the prepared statement output. If this is the case, the following
steps replace those specified above:

2-70 Topics

Dynamic SQL Open Client Release 10.0

1. Call ct_dyndesc with operation as CS_ALLOC to allocate a descriptor
area.

2. Call ct_dynamic with type as CS_DESCRIBE_OUTPUT to initiate the
command to get the description.

3. Call ct_send to send the command to the server.

4. Call ct_results as necessary to process the results of the command.
A CS_DESCRIBE_OUTPUT command generates a result set of type
CS_DESCRIBE_RESULT. This result set contains no fetchable data but
does contain descriptive information for each of the output
columns.

5. Call ct_dyndesc with operation as CS_USE_DESC to associate the
results with the descriptor area allocated in step 1. This assumes
that CS_DESCRIBE_RESULT was returned, as do the following two
steps.

6. Call ct_dyndesc with operation as CS_GETCNT to get the number of
output columns.

7. For each output column, call ct_dyndesc with operation as
CS_GETATT to get the value’s description.

Executing a Prepared Statement

To execute a previously-prepared statement:

1. Call ct_dynamic with type as CS_EXECUTE to initiate a command to
execute the statement.

2. Define the input values to the SQL statement by performing the
following steps for each input value:

- Prompt the end-user for an input value.

- Call ct_param to pass the input value to the SQL statement.

Alternately, if the application is using a dynamic SQL descriptor
area, perform these steps for each input value:

- Prompt the end-user for an input value.

- Call ct_dyndesc with operation as CS_SETATT to put the value into
the descriptor area.

If the application is using a dynamic SQL descriptor area, then
after all the input values have been defined, associate the
dynamic SQL descriptor area with the prepared statement:

- Call ct_dyndesc with operation as CS_USE_DESC.

Client-Library/C Reference Manual 2-71

Open Client Release 10.0 Dynamic SQL

The input values are substituted for the dynamic parameter
markers.

3. Call ct_send to send the command to the server.

4. Call ct_results as necessary to process the results of the command.

Declaring and Opening a Cursor on a Prepared Statement

Instead of executing a prepared statement, an application can declare
and open a cursor on it. The prepared statement serves as the body of
the cursor. When the application opens the cursor, the prepared
statement is executed. Any results generated are available to the
application as a cursor row result set.

To declare and open a cursor on a prepared statement:

1. Call ct_dynamic with type as CS_CURSOR_DECLARE to initiate a
command to declare a cursor.

Note that ct_dynamic, not ct_cursor, is used to declare a cursor on a
prepared statement.

2. Call ct_cursor with type as CS_CURSOR_OPTION to set options for the
cursor.

3. Call ct_send to send the command to the server.

4. Call ct_results as necessary to process the results of the command.

5. Call ct_cursor with type as CS_CURSOR_OPEN to initiate a command
to open the cursor.

6. Define the input values to the SQL statement by performing the
following two steps for each input value:

- Prompt the end-user for an input value.

- Call ct_param to pass the input value to the SQL statement.

Alternately, if the application is using a dynamic SQL descriptor
area, perform the following two steps for each input value:

- Prompt the end-user for an input value.

- Call ct_dyndesc with operation as CS_SETATT to put the value into
the descriptor area.

To then associate the dynamic SQL descriptor area with the
prepared statement:

- Call ct_dyndesc with operation as CS_USE_DESC.

The input values are substituted for the dynamic parameter
markers.

2-72 Topics

Dynamic SQL Open Client Release 10.0

7. Call ct_send to send the command to the server.

8. Call ct_results as necessary to process the results of the command.

If desired, an application can batch together the commands to declare
and open the cursor by eliminating the ct_send and ct_results calls that
follow the ct_cursor(CS_CURSOR_OPTION) call.

Processing Results

Processing the results of a dynamic SQL statement is the same as
processing the results of any other SQL statement.

See the Results topics page, the ct_results manual page, and the “Step 5:
Processing Results” section of the Open Client Client-Library/C
Programmer’s Guide for detailed information about processing results.

De-allocating a Prepared Statement

When an application is done with a prepared statement, it can de-
allocate the statement and free any resources associated with it.

To de-allocate a prepared statement:

1. If the application used descriptor areas for the prepared statement
input and output, de-allocate the descriptor areas by calling
dt_dyndesc with operation as CS_DEALLOC once for each descriptor
area.

2. Call ct_dynamic with type as CS_DEALLOC to initiate a command to
de-allocate the prepared statement.

3. If the application declared and opened a cursor on the prepared
statement, call ct_cursor with type as CS_CURSOR_CLOSE and option
as CS_DEALLOC to initiate a command both to close and de-
allocate the cursor.

4. Call ct_send to send the command to de-allocate the statement.

5. Call ct_results as necessary to process the results of the command.

Client-Library/C Reference Manual 2-73

Open Client Release 10.0 Dynamic SQL

Alternatives to Dynamic SQL

Because of the numerous restrictions of dynamic SQL, we recommend
that applications use stored procedures to accomplish the same tasks.
Stored procedures offer identical functionality to dynamic SQL except
for the ability to get a description of prepared statement input: creating
a stored procedure is analogous to preparing a SQL statement, a stored
procedure’s input parameters serve the same purpose as do dynamic
parameter markers, and executing a stored procedure is equivalent to
executing a prepared statement.

2-74 Topics

Error and Message Handling Open Client Release 10.0

Error and Message Handling

All Client-Library routines return success or failure indications. It is
highly recommended that applications check these return codes.

In addition, Client-Library applications must handle two types of
error and informational messages:

• Client-Library messages, also known as ‘‘’client messages”, are
generated by Client-Library. They range in severity from
informational messages to fatal errors.

• Server messages are generated by the server. Server messages also
range in severity from informational messages to fatal errors. SQL
Server messages can be listed by executing the Transact-SQL
command “select * from sysmessages”. See the Open Server Server-
Library Reference Manual for a list of Open Server messages.

➤ Note
Don’t confuse Client-Library and server messages with a result set of type

CS_MSG_RESULT. Client-Library and server messages are the means through

which Client-Library and the server communicate error and informational

conditions to an application. An application accesses Client-Library and server

messages either through message callback routines, or in-line, using ct_diag. A

message result set, on the other hand, is one of several types of result sets a

server can return to an application. An application processes a result set of type

CS_MSG_RESULT by calling ct_res_info to get the message’s id.

Two Methods of Handling Messages

An application can handle Client-Library and server messages in one
of two ways:

• By installing callback routines to handle messages

• In-line, using the Client-Library routine ct_diag

The callback method has the advantages of:

• Centralizing message handling code.

Client-Library/C Reference Manual 2-75

Open Client Release 10.0 Error and Message Handling

• Providing a method to gracefully handle unexpected errors.
Client-Library automatically calls the appropriate message
callback whenever a message is generated, so an application will
not fail to trap unexpected errors. An application using only main-
line error-handling logic may not successfully trap errors that have
not been anticipated.

In-line message handling has the advantage of allowing an application
to check for messages at particular times. For example, an application
that is creating a connection might choose to wait until all connection-
related commands are issued before checking for messages.

Most applications will use the callback method to handle messages.
However, an application that is running on a platform/language
combination that does not support callbacks must use the in-line
method.

An application indicates which method it will use by calling ct_callback
to install message callbacks or by calling ct_diag to initialize in-line
message handling.

An application can use different methods on different connections. For
example, an application can install message callbacks at the context
level, allocate two connections, and then call ct_diag to initialize in-line
message handling for one of the connections. The other connection
will use the default message callbacks that it picked up from its parent
context.

An application can switch back and forth between the in-line and the
callback methods:

• Installing either a client message callback or a server message
callback turns off in-line message handling. Any saved messages
are discarded.

• Likewise, calling ct_diag to initialize in-line message handling de-
installs a connection’s message callbacks. If this occurs, the
connection’s first CS_GET call to ct_diag will retrieve a warning
message to this effect.

If a callback of the proper type is not installed and in-line message
handling is not enabled, Client-Library discards message information.

Using Callbacks to Handle Messages

An application calls ct_callback to install message callbacks.

2-76 Topics

Error and Message Handling Open Client Release 10.0

Client-Library stores callbacks in the CS_CONNECTION and
CS_CONTEXT structures. Because of this, when a Client-Library error
occurs that makes a CS_CONNECTION or CS_CONTEXT structure
unusable, Client-Library cannot call the client message callback.
However, the routine that caused the error still returns CS_FAIL.

For more information on using callbacks to handle Client-Library and
server messages, see ‘‘Callbacks’’ on page 2-11 and the manual page
for ct_callback, page 3- 21.

In-Line Message Handling

An application calls ct_diag to initialize in-line message handling for a
connection. A typical application calls ct_diag immediately after calling
ct_con_alloc to allocate the connection structure.

An application cannot use ct_diag at the context level. That is, an
application cannot use ct_diag to retrieve messages generated by
routines that take a CS_CONTEXT (and no CS_CONNECTION) as a
parameter. These messages are unavailable to an application that is
using in-line error handling.

An application that is retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE should set the Client-Library property CS_EXTRA_INF to
CS_TRUE. See “The CS_EXTRA_INF Property,” below, for more
information.

The CS_DIAG_TIMEOUT property controls whether Client-Library fails
or retries when a Client-Library routine generates a timeout error.

If a Client-Library error occurs that makes a CS_CONNECTION structure
unusable, ct_diag returns CS_FAIL when called to retrieve information
about the original error.

For more information on the in-line method of handling Client-
Library and server messages, see the manual page for ct_diag, 3-114.

Client-Library’s Message Structures

Client-Library uses the following structures to return message
information:

• The CS_CLIENTMSG structure, documented on page 2-45

• The CS_SERVERMSG structure, documented on page 2-56

• The SQLCA structure, documented on page 2-181

• The SQLCODE structure, documented on page 2-183

Client-Library/C Reference Manual 2-77

Open Client Release 10.0 Error and Message Handling

• The SQLSTATE structure, documented on page 2-184

The CS_EXTRA_INF Property

The CS_EXTRA_INF property determines whether or not Client-Library
returns certain kinds of informational messages.

An application that is retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE should set the Client-Library property CS_EXTRA_INF to
CS_TRUE. This is because the SQL structures require information that
Client-Library does not customarily return. If CS_EXTRA_INF is not set,
a loss of information will occur.

An application that is not using the SQL structures can also set
CS_EXTRA_INF to CS_TRUE. In this case, the extra information is
returned as standard Client-Library messages.

The additional information returned includes the number of rows
affected by the most recent command.

Sequencing Long Messages

Message callback routines and ct_diag return Client-Library and server
messages in CS_CLIENTMSG and CS_SERVERMSG structures. In the
CS_CLIENTMSG structure, the message text is stored in the msgstring
field. In the CS_SERVERMSG structure, the message text is stored in the
text field. Both msgstring and text are CS_MAX_MSG bytes long.

If a message longer than CS_MAX_MSG - 1 bytes is generated, Client-
Library’s default behavior is to truncate the message. However, an
application can use the CS_NO_TRUNCATE property to tell Client-
Library to “sequence” long messages instead of truncating them.

When Client-Library is sequencing long messages, it uses as many
CS_CLIENTMSG or CS_SERVERMSG structures as necessary to return the
full text of a message. The message’s first CS_MAX_MSG bytes are
returned in one structure, its second CS_MAX_MSG bytes in a second
structure, and so forth.

Client-Library null terminates only the last chunk of a message. If a
message is exactly CS_MAX_MSG bytes long, the message is returned in
two chunks: the first containing CS_MAX_MSG bytes of the message and
the second containing a null terminator.

If an application is using callback routines to handle messages, Client-
Library calls the callback routine once for each message chunk.

2-78 Topics

Error and Message Handling Open Client Release 10.0

If an application is using ct_diag to handle messages, it must call ct_diag
once for each message chunk.

➤ Note
The SQLCA, SQLCODE, and SQLSTATE structures do not support sequenced

messages. An application cannot use these structures to retrieve sequenced

messages. Messages that are too long for these structures are truncated.

➤ Note
Operating system messages, if any, are reported via the osstring field of the

CS_CLIENTMSG structure. Client-Library does not sequence operating system

messages.

Message Structure Fields for Sequenced Messages

• The status field in the CS_CLIENTMSG and CS_SERVERMSG structures
indicates whether the structure contains a whole message or a
chunk of a message.

The following table lists status values that are related to
sequenced messages:

- If CS_FIRST_CHUNK and CS_LAST_CHUNK are both on, then the
message text in the structure is the entire message.

- If neither CS_FIRST_CHUNK nor CS_LAST_CHUNK is on, then the
message text in the structure is a middle chunk.

• The msgstringlen field in the CS_CLIENTMSG structure and the
textlen field in the CS_SERVERMSG structure always reflect the length
of the current message chunk.

• All other fields in the CS_CLIENTMSG and CS_SERVERMSG are
repeated with each message chunk.

Symbolic Value: To Indicate:

CS_FIRST_CHUNK The message text is the first chunk of the message.

CS_LAST_CHUNK The message text is the last chunk of the message.

Table 2-18: status values for sequenced messages

Client-Library/C Reference Manual 2-79

Open Client Release 10.0 Error and Message Handling

Sequenced Messages and Extended Error Data

If a sequenced server message has extended error data associated with
it, an application can retrieve the extended error data while processing
any single chunk of the sequenced message. Once the application has
retrieved the extended error data, however, it is no longer available.

For more information on extended error data, see ‘‘Extended Error
Data’’ on page 2-79.

Sequenced Messages and ct_diag

If an application is using sequenced error messages, ct_diag acts on
message chunks instead of messages. This has the following effects:

• A ct_diag(CS_GET) call with index i returns the i’th message chunk,
not the i’th message.

• A ct_diag(CS_MSGLIMIT) call limits the number of chunks, not the
number of messages, that Client-Library will store.

• A ct_diag(CS_STATUS) call returns the number of currently-stored
chunks, not the number of currently-stored messages.

Extended Error Data

Some server messages have “extended error data” associated with
them. Extended error data is simply additional information about the
error.

For SQL Server messages, the additional information is most typically
which column or columns provoked the error.

Client-Library makes extended error data available to an application
in the form of a parameter result set, where each result item is a piece
of extended error data. A piece of extended error data can be named,
and can be of any datatype.

An application can retrieve extended error data but is not required to
do so.

What’s Extended Error Data Good For?

Applications that allow end-users to enter or edit data often need to
report errors to their users at the column level. The standard server
message mechanism, however, makes column-level information
available only within the text of the server message. Extended error
data provides a means for applications to conveniently access column-
level information.

2-80 Topics

Error and Message Handling Open Client Release 10.0

For example, imagine an application that allows end-users to enter
and edit data in the titleauthor table in the pubs2 database. titleauthor
uses a key composed of two columns, au_id and title_id. Any attempt
to enter a row with an au_id and title_id that match an existing row will
cause a “duplicate key” message to be sent to the application.

On receiving this message, the application needs to identify the
problem column or columns to the end-user, so that the user can
correct them. This information is not available in the duplicate key
message, except in the message text. The information is available,
however, as extended error data.

How Can an Application Tell if Extended Error Data is Available?

When Client-Library returns standard server message information to
an application in a CS_SERVERMSG structure, it sets the CS_HASEED bit
of the status field of the CS_SERVERMSG structure if extended error data
is available for the message.

Extended error data is returned to an application in the form of a
parameter result set that is available on a special CS_COMMAND
structure that Client-Library provides.

To retrieve extended error data, an application processes the
parameter result set.

Server Message Callbacks and Extended Error Data

Within a server message callback routine, an application retrieves the
CS_COMMAND with the extended error data by calling ct_con_props with
property as CS_EED_CMD:

CS_RETCODE ret;
CS_COMMAND *eed_cmd;
CS_INT outlen;

ret = ct_con_props(connection, CS_GET, CS_EED_CMD,
&eed_cmd, CS_UNUSED, &outlen);

ct_con_props sets eed_cmd to point to the CS_COMMAND on which the
extended error data is available.

Once it has the CS_COMMAND, the callback routine processes the
extended error data as a normal parameter result set, calling ct_res_info,
ct_describe, ct_bind, ct_fetch, and ct_get_data to describe, bind, and fetch the
parameters. It is not necessary for the callback routine to call ct_results.

Client-Library/C Reference Manual 2-81

Open Client Release 10.0 Error and Message Handling

In-Line Error Handling and Extended Error Data

An application that is handling server messages in-line retrieves the
CS_COMMAND with the extended error data by calling ct_diag with
operation as CS_EED_CMD:

CS_RETCODE ret;
CS_COMMAND *eed_cmd;
CS_INT index;

ret = ct_diag (connection, CS_EED_CMD,
CS_SERVERMSG_TYPE, index, &eed_cmd);

In this call, type must be CS_SERVERMSG_TYPE and index must be the
index of the message for which extended error data is available. ct_diag
sets eed_cmd to point to the CS_COMMAND on which the extended error
data is available.

Once it has the CS_COMMAND, the application processes the extended
error data as a normal parameter result set, calling ct_res_info,
ct_describe, ct_bind, ct_fetch, and ct_get_data to describe, bind, and fetch the
parameters. It is not necessary for the application to call ct_results.

Server Transaction States

Server transaction state information is useful when an application
needs to determine the outcome of a transaction.

The following table lists the symbolic values that represent transaction
states:

Symbolic Value: To Indicate:

CS_TRAN_IN_PROGRESS A transaction is in progress.

CS_TRAN_COMPLETED The most recent transaction completed
successfully.

CS_TRAN_STMT_FAIL The most-recently-executed statement in the
current transaction failed.

CS_TRAN_FAIL The most recent transaction failed.

CS_TRAN_UNDEFINED A transaction state is not currently defined.

Table 2-19: Transaction states

2-82 Topics

Error and Message Handling Open Client Release 10.0

Retrieving Transaction States in Main-Line Code

In main-line code, an application retrieves a transaction state by
calling ct_res_info with type as CS_TRANS_STATE:

CS_RETCODE ret;
CS_INT outlen;
CS_INT trans_state;

ret = ct_res_info (cmd, CS_TRANS_STATE,
&trans_state, CS_UNUSED, outlen)

ct_res_info sets trans_state to one of the symbolic values listed in Table 2-
19: Transaction states on page 2-81.

Transaction state information is available only for CS_COMMAND
structures with pending results or an open cursor. That is, transaction
state information is available if an application’s last call to ct_results
returned CS_SUCCEED.

Transaction state information is guaranteed to be correct only after
ct_results sets *result_type to CS_CMD_DONE, CS_CMD_SUCCEED, or
CS_CMD_FAIL.

Retrieving Transaction States in a Server Message Callback

An application can retrieve transaction states inside a server message
callback only if extended error data is available.

Within a server message callback, Client-Library indicates that
extended error data is available by setting the CS_HASEED bit of the
status field of the CS_SERVERMSG structure describing the message.

If extended error data is available, the application can retrieve the
current transaction state by:

1. Retrieving the CS_COMMAND with the extended error data by
calling ct_con_props with property as CS_EED_CMD.

2. Calling ct_res_info with type as CS_TRANS_STATE. ct_res_info sets its
*buffer parameter to one of the symbolic values listed in Table 2-19:
Transaction states.

Client-Library/C Reference Manual 2-83

Open Client Release 10.0 Header Files

Header Files

The header file ctpublic.h is required in all application source files that
contain calls to Client-Library.

ctpublic.h includes:

• Definitions of symbolic constants used by Client-Library routines.

• Declarations for Client-Library routines.

• cspublic.h, the CS-Library header file. cspublic.h includes:

- Definitions of common client/server symbolic constants.

- Typedefs for common client/server structures.

- Declarations for CS-Library routines.

- cstypes.h, which contains typedefs for Client-Library datatypes.

- sqlca.h, which contains a typedef for the SQLCA structure.

- csconfig.h, which contains platform-dependent datatypes and
definitions.

2-84 Topics

International Support Open Client Release 10.0

International Support

Client-Library provides support for international applications by
allowing them to localize. An application that is localized typically:

• Uses a local language for Client-Library and SQL Server messages

• Uses local datetime formats

• Uses a specific character set and collating sequence (also called
“sort order”) when converting or comparing strings

On most platforms, Client-Library uses environment variables to
determine the default localization values than an application will use.
If these default values meet an application’s needs, it does not have to
localize further.

If the default values don’t meet an application’s needs, it can use a
CS_LOCALE structure to set custom localization values at the context,
connection, or data element levels. For information on how to use a
CS_LOCALE structure, see ‘‘Using a CS_LOCALE Structure’’ on page 2-
85.

◆ WARNING!
Platform-specific localization issues are discussed in the International
Support chapter of the Open Client/Server Supplement . You must read
this chapter in order to understand Client-Library’s localization
mechanism and how environment variables affect localization.

When Does an Application Need to Use a CS_LOCALE?

An application needs to use a CS_LOCALE structure if Client-Library’s
default localization values don’t meet its needs. For information on
how Client-Library sets up default localization values, see the Open
Client/Server Supplement for your platform.

Typically, an application needs to use a CS_LOCALE if it will be working
in a language or character set that differs from the predominant local
language and character set.

For example:

• An application running in a German environment might need to
use a CS_LOCALE in order to receive Client-Library error messages
in French.

Client-Library/C Reference Manual 2-85

Open Client Release 10.0 International Support

• An English gateway application that supports Danish clients
might need to use a CS_LOCALE.

Using a CS_LOCALE Structure

A CS_LOCALE structure defines localization values. An application can
use a CS_LOCALE structure to define custom localization values at the
context, connection, and data element levels.

To do this, an application:

1. Calls cs_loc_alloc to allocate a CS_LOCALE structure.

2. Calls cs_locale to load the CS_LOCALE with custom localization
values. Depending on what parameters it is called with, cs_locale
may search for the LC_ALL, LC_CTYPE, LC_COLLATE, LC_MESSAGE,
LC_TIME or LANG environment variables.

3. Uses the CS_LOCALE. An application can:

- Call cs_config with property as CS_LOC_PROP to copy the custom
localization values into a context structure.

- Call ct_con_props with property as CS_LOC_PROP to copy the custom
localization values into a connection structure. Note that because
CS_LOC_PROP is a login property, an application cannot change its
value after a connection is open.

- Supply the CS_LOCALE as a parameter to a routine that accepts
custom localization values (cs_strcmp, cs_time).

- Include the CS_LOCALE in a CS_DATAFMT structure describing a
destination program variable (cs_convert, ct_bind).

4. Calls cs_loc_drop to de-allocate the CS_LOCALE.

Context-Level Localization

Context-level localization values define the localization for an Open
Client context.

When an application allocates a CS_CONTEXT structure, CS-Library
assigns default localization values to the new context. On most
platforms, environment variables determine the default values. For
specific information on how default localization values are assigned
on your platform, see the Open Client/Server Supplement.

Because default localization values are always defined, an application
only needs to define new context-level localization values if the
default values are not acceptable.

2-86 Topics

International Support Open Client Release 10.0

Connection-Level Localization

Connection-level localization values define the localization for a
specific client-server connection.

A new connection inherits default localization values from its parent
context, so an application needs to define new localization values for a
connection only if the parent context’s values are not acceptable.

When an application calls ct_connect to open a connection, the server
determines whether or not it can support the connection’s language
and character set. If it cannot, the connection attempt fails.

◆ WARNING!
This functionality is very different from that of DB-Library, where a
connection uses SQL Server’s default national language unless the
application calls DBSETLNATLANG to set the national language name.

Data-Element-Level Localization

A data-element-level CS_LOCALE defines localization values for a
specific data element, for example, a routine parameter or bind
variable.

An application needs to define localization values at the data element
level only if the existing connection’s values are not acceptable.

For example, suppose a connection is using an English locale
(us_english language, iso_1 character set, and appropriate datetime
formats), but the connection needs to display a datetime result column
using French day and month names.

The application can:

• Load a CS_LOCALE with French datetime formats.

• Call ct_bind to bind the result column to a character variable. The
CS_DATAFMT structure that describes the bind variable must
reference the French CS_LOCALE.

When the application calls ct_fetch, the datetime value in the result
column is automatically converted to a character string containing
French day and month names and copied into the bound variable.

Client-Library/C Reference Manual 2-87

Open Client Release 10.0 International Support

Where Does Client-Library Look for Localization Information?

When determining which localization values to use, Client-Library
starts at the data element level and proceeds up. The order of
precedence is:

1. Data element localization values:

- The CS_LOCALE associated with the CS_DATAFMT structure that
describes a data element, or

- The CS_LOCALE passed to a routine as a parameter.

2. Connection structure localization values.

3. Context structure localization values.

Context-level localization values are always defined, because when an
application allocates a context structure, CS-Library provides the new
context with default localization values.

(After allocating a context, an application can change its localization
values by calling cs_loc_alloc, cs_locale, and cs_config.)

The Locales File

The SYBASE locales file associates locale names with languages,
character sets, and sort orders. Open Client/Server products use the
locales file when loading localization information.

The locales file directs Open Client/Server products to language,
character set, and sort order names, but does not contain actual
localized messages or character set information.

For more information on the locales file, see the Open Client/Server
Supplement.

Locales File Entries

The locales file has platform-specific sections, each of which contains
entries of the form:

locale = locale_name , language , charset, sortorder

sortorder is an optional field. If not specified, the sort order for the
specified locale defaults to binary.

Each entry defines a locale name by associating it with a language,
character set, and sort order.

For example, a section of the locales file might contain the following
entries:

2-88 Topics

International Support Open Client Release 10.0

locale = default, us_english, iso_1, dictionary
locale = fr, french, iso_1, noaccents
locale = C.japanese, us_english, eucjis

These entries indicate that:

• When a locale name of “default” is specified, a language of
“us_english”, a character set of “iso_1”, and a sort order of
“dictionary” should be used.

• When a locale name of “fr” is specified, a language of “french”, a
character set of “iso_1”, and a sort order of “noaccents” should be
used.

• When a locale name of “C.japanese” is specified, a language of
“us_english”, a character set of “eucjis”, and a sort order of
“binary” (the default sort order) should be used.

Predefined Locale Names

SYBASE pre-defines some locale names by including entries for them in
the locales file. If these entries don’t meet your needs, you can either
modify them or add additional entries that define new locale names.

cs_locale and the Locales File

Before using a CS_LOCALE structure to set custom localization values
for a context, connection, or data element, a Client-Library application
must call cs_locale to load the CS_LOCALE with the desired localization
values.

In loading the CS_LOCALE, cs_locale:

1. Determines what to use as a locale name:

- If cs_locale’s buffer parameter is supplied, this is the locale name.

- If cs_locale’s buffer parameter is NULL, cs_locale performs a
platform-specific operating system search for a locale name. For
information on this search, see the Open Client/Server Supplement
for your platform.

2. Looks the locale name up in the locales file to determine which
language, character set, and sort order are associated with it.

3. Loads the type of information specified by the type parameter into
the CS_LOCALE. For example, if type is CS_LC_CTYPE, cs_locale loads
character set information. If type is CS_LC_MESSAGE, cs_locale loads
message information.

Client-Library/C Reference Manual 2-89

Open Client Release 10.0 Logical Sequence of Calls

Logical Sequence of Calls

Client-Library uses state machines to define and enforce the order in
which applications call Client-Library routines. This defined order is
known as ‘a logical sequence’. For example, an application must send
a SQL query statement to a server before it can execute the statement,
and it must execute a statement before it can fetch rows from the
statement’s result set.

Client-Library State Machines

The application programming interface (API) layer of Client-Library
consists of three state machines, each corresponding to one of the three
basic control structures: CS_CONTEXT, CS_CONNECTION, or
CS_COMMAND. See chapter 3 of the Open Client Client-Library/C
Programmer’s Guide for a discussion of the basic control structures.

At the context level, an application sets up its environment: allocating
one or more context structures, setting CS-Library properties for the
contexts, initializing Client-Library, and setting Client-Library
properties for the contexts.

At the connection level, an application connects to a server: allocating
one or more connection structures, setting properties for the
connections, opening the connections, and setting any server options
for the connections. An application can allocate a connection structure
only after a context structure has been allocated.

At the command level, an application allocates one or more command
structures, sends commands, and processes results. An application
can allocate a command structure only after a connection structure has
been allocated.

Command Level Sequence of Calls

It is at the command level that the logical sequence of calls becomes
complex. This is due to the number of routines that are managed at the
command level, compared to the number managed at the context and
connection levels.

Client-Library’s command state machine gets help from two other
state tables when it attempts to verify that a call to a particular routine
is permitted. These are the initiated commands state table and the
result types state table.

2-90 Topics

Logical Sequence of Calls Open Client Release 10.0

Commands State Table

The commands table defines ‘states’ in which an application can be.
For example, it defines a Command Sent state which indicates that the
last thing an application did was send a command to a server (via
ct_send).

The commands table also maps each state to valid Client-Library
routines that an application can call while in that state. For example, in
the Command Sent state, an application can cancel the command or
the result set, get or set command structure properties, perform
operations on a dynamic SQL descriptor area, receive a TDS packet
from the server, or set up results for processing.

See ‘‘Command States’’ on page 2-92 for a detailed description of each
of the command states. See ‘‘Callable Routines in Each Command
State’’ on page 2-95 for a mapping of command states with Client-
Library routines.

Initiated Commands State Table

The initiated commands table focuses on routines that initiate and set
up commands to be sent to a server (ct_command, ct_cursor, ct_dynamic,
ct_param, and so on). It provides a finer level of enforcement than is
possible with the commands table.

For example, the command state machine ensures that ct_param is
called only after a command has been initiated. However, it cannot
prevent an application from calling ct_param when the initiated
command does not take parameters (as in the case of a
ct_cursor(CS_CURSOR_CLOSE)). It is in cases like these that the initiated
commands table enforces the logical sequence of calls.

As another example, assume that a Client-Library cursor is declared
using the cmd1 CS_COMMAND structure. After the cursor declare
command is sent to the server and the results processed, the state
machine is back in an Idle state:

ct_cursor(cmd1,

Command
initiated

Command
sent

ct_send()

Results
available

ct_results’ *result_type
value = CS_CMD_SUCCEED

Results
available Idle

ct_results returns
CS_END_RESULTS

Idle

ct_results’ *result_type
value = CS_CMD_DONE

CS_CURSOR_DECLARE)

Client-Library/C Reference Manual 2-91

Open Client Release 10.0 Logical Sequence of Calls

From an Idle state, the command state machine permits an application
to initiate a new command. This means that it cannot prevent an
application from declaring a second cursor using the same
CS_COMMAND structure that it used to declare the first cursor (cmd1).

The initiated commands table, however, keeps track of the state of a
cursor on a command handle. It recognizes that if a cursor has been
previously declared using a particular CS_COMMAND structure, a
second attempt to declare a cursor using the same CS_COMMAND
structure is illegal.

See ‘‘Initiated Commands’’ on page 2-104 for a detailed description of
each of the initiated command states. See ‘‘Callable Routines for
Initiated Commands’’ on page 2-107 for a mapping of initiated
command states with Client-Library routines.

Result Types State Table

The result types table focuses on routines that return information
about result sets. The command state machine defines states (like
Fetchable Results and Fetchable Cursor Results) which indicate that
results are available. The result types table goes a step farther by
indicating the type of available results.

This information is important because certain routines only make
sense for certain result types. For example, calling ct_compute_info is
only logical when compute results are available, and calling
ct_br_column is only logical when regular row results are available. It is
in cases like these that the result types table enforces the logical
sequence of calls.

See ‘‘Result Types’’ on page 2-108 for a detailed description of each of
the result type states. See ‘‘Callable Routines for Each Result Type’’ on
page 2-110 for a mapping of result type states with Client-Library
routines.

2-92 Topics

Logical Sequence of Calls Open Client Release 10.0

Summary

This diagram shows how the state tables work together:

Be aware that if there are multiple command structures sharing the
same connection,

The information that follows is intended to serve as a reference for
valid Client-Library application behavior. Use it when you want to
verify that a particular sequence of routine calls is valid or when you
need to know ‘where to go from here.’

➤ Note
The important point to remember is that Client-Library enforces the logical

sequence of calls for you. It returns descriptive error messages at run-time if an

application has not called routines in a logical sequence.

Command States

Client-Library keeps track of a command’s current state. A command
can be in any one of the following states.

Command State: What it Indicates:

Idle The application either: 1) hasn’t yet initiated a
command, 2) has completely processed the results of
the last command, 3) has fetched all cursor rows but
has not closed the Client-Library cursor, or 4) has
closed a Client-Library cursor that is still associated
with unprocessed results.

Table 2-20: Command states

Does
Initiated

Did
Initiated

Did
Command

State
check

succeed?

Yes

No

Routine cannot
be called

Commands
table need

to be
checked?

Yes
No

Commands
check

suceed?

No

Yes

Routine cannot
be called

Does
Result
Type

table need
to be

checked?

No

Routine can
be called

Yes
Did

Result
Type
check

suceed?

No

Yes

Routine cannot
be called

Routine
can be
called

Client-Library/C Reference Manual 2-93

Open Client Release 10.0 Logical Sequence of Calls

Command
initiated

The application called ct_command, ct_cursor, or
ct_dynamic to initiate a command, but it hasn’t yet sent
it to the server.

Command
sent

The application called ct_send to send a command to
the server, but it hasn’t yet called ct_results to set up
result data for processing.

Non-fetchable
results
available

The application called ct_results and the result set
contains no actual result data. Additional calls to
ct_results are necessary.
or:
The application called ct_fetch which returned
CS_END_DATA.

ANSI-style cursor
end-data

The application called ct_fetch which returned
CS_END_DATA and the CS_ANSI_BINDS property is
set.

Fetchable
results

The application called ct_results and the result set
contains fetchable results (compute results, return
parameter results, regular row results, and stored
procedure return status results). ct_fetch has not been
called yet.

Fetchable
cursor results

The application called ct_results and the result set
contains fetchable cursor results. ct_fetch has not been
called yet.

Fetchable
nested
command

The application initiated a cursor close command
(ct_cursor(CS_CURSOR_CLOSE)) before fetching from
a result set that contains fetchable cursor results.

Sent fetchable
nested command

The application called ct_send to send the cursor close
command to the server before fetching from a result
set that contains fetchable cursor results.

Processing
fetchable nested
command

The application called ct_results to process the results
of the cursor close command before fetching from a
result set that contains fetchable cursor results.

Fetching
results

The application called ct_fetch at least once and is
currently in the process of fetching results (compute
results, return parameter results, regular row results,
and stored procedure return status results).

Fetching cursor
results

The application called ct_fetch at least once and is
currently in the process of fetching cursor row results.

Command State: What it Indicates:

Table 2-20: Command states (continued)

2-94 Topics

Logical Sequence of Calls Open Client Release 10.0

This diagram shows a command transitioning through several
command states.

Command-level Routines

These Client-Library routines are managed at the command level:

Fetching nested
command

The application initiated a cursor close
(ct_cursor(CS_CURSOR_CLOSE)), cursor update
(ct_cursor(CS_CURSOR_UPDATE)), or cursor delete
(ct_cursor(CS_CURSOR_DELETE)) command while
fetching from a result set that contains cursor results.

Sent fetching
nested
command

The application called ct_send to send the cursor close,
cursor update, or cursor delete command to the server
while fetching from a result set that contains cursor
results.

Processing
fetching nested
command

The application called ct_results to process the results
of the cursor close, cursor update, or cursor delete
command while fetching from a result set that
contains cursor results.

Result set
canceled

The application canceled the current command
(ct_cancel(CS_CANCEL_ALL)). An application can call
ct_results once more to return the command to an Idle
state.

Undefined The command structure is in an undefined state. Call
ct_cancel(CS_CANCEL_ALL).

In receive
passthrough

The application called ct_recvpassthru and
CS_PASSTHRU_MORE was returned.

In send
passthrough

The application called ct_sendpassthru and
CS_PASSTHRU_MORE was returned.

Command State: What it Indicates:

Table 2-20: Command states (continued)

ct_command()

Command
initiated

Command
sent

ct_send()

Fetchable
results

ct_results’ *result_type
value = CS_ROW_RESULT

Fetching
results

while ct_fetch()
returns CS_SUCCEED

Results
available

when ct_fetch()
returns CS_END_DATA

Idle

ct_results returns
CS_END_RESULTS

Idle

Client-Library/C Reference Manual 2-95

Open Client Release 10.0 Logical Sequence of Calls

ct_bind ct_command ct_dyndesc ct_res_info
ct_br_column ct_compute_info ct_fetch ct_results
ct_br_table ct_cursor ct_get_data ct_send
ct_cancel ct_data_info ct_getformat ct_send_data
ct_cmd_drop ct_describe ct_keydata ct_recvpassthru
ct_cmd_props ct_dynamic ct_param ct_sendpassthru

Callable Routines in Each Command State

This table maps each command state to the Client-Library routines
that an application can legally call while in that state. It also identifies
the state of the command after the routine completes.

Beginning
State: Callable Routines: Resulting

Command State:

Idle ct_cancel(CS_CANCEL_ALL)
ct_cancel(CS_CANCEL_ATTN)

Idle, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cmd_drop Idle.

ct_cmd_props Idle.

ct_command Command initiated, if CS_SUCCEED.
Idle, if CS_FAIL.

ct_cursor Command initiated, if CS_SUCCEED.
Idle, if CS_FAIL.

ct_dynamic Command initiated, if CS_SUCCEED.
Idle, if CS_FAIL.

ct_dyndesc Idle.

ct_sendpassthru In send passthrough, if
CS_PASSTHRU_MORE.

Command sent, if CS_PASSTHRU_EOM.
Undefined, if CS_FAIL.

Command
initiated

ct_cancel(CS_CANCEL_ALL) Idle, if CS_SUCCEED.
Command initiated, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Command initiated.

ct_cmd_props Command initiated.

ct_cursor Command initiated.

ct_data_info(CS_SET) Command initiated.

ct_dyndesc Command initiated.

ct_param Command initiated.

Table 2-21: Callable routines at each command state

2-96 Topics

Logical Sequence of Calls Open Client Release 10.0

ct_send Command sent, if CS_SUCCEED.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_send_data Command initiated, if CS_SUCCEED.
Undefined, if CS_FAIL.

Command
sent

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Command sent, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cmd_props Command sent

ct_dyndesc Command sent

ct_recvpassthru In receive passthrough, if
CS_PASSTHRU_MORE.

Idle, if CS_PASSTHRU_EOM,
CS_CANCELED.

Undefined, if CS_FAIL.

ct_results Non-fetchable results available, if
CS_SUCCEED and *result_type equals
CS_MSG_RESULT, CS_CMD_SUCCEED,
CS_CMD_FAIL, CS_CMD_DONE,
CS_ROWFMT_RESULT,
CS_COMPUTEFMT_RESULT, or
CS_DESCRIBE_RESULT.

Fetchable results, if CS_SUCCEED and
*result_type equals CS_ROW_RESULT,
CS_COMPUTE_RESULT,
CS_PARAM_RESULT, or
CS_STATUS_RESULT.

Fetchable cursor results, if CS_SUCCEED
and *result_type equals
CS_CURSOR_RESULT.

Idle, if CS_CANCELED or
CS_END_RESULTS.

Undefined, if CS_SUCCEED and
*result_type equals CS_CMD_FAIL.

Non-fetchable
results
available

ct_br_column Non-fetchable results available.

ct_br_table Non-fetchable results available.

Beginning
State: Callable Routines: Resulting

Command State:

Table 2-21: Callable routines at each command state

Client-Library/C Reference Manual 2-97

Open Client Release 10.0 Logical Sequence of Calls

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Non-fetchable results available, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) Non-fetchable results available, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cmd_props Non-fetchable results available.

ct_compute_info Non-fetchable results available.

ct_describe Non-fetchable results available.

ct_dyndesc Non-fetchable results available.

ct_getformat Non-fetchable results available.

ct_res_info Non-fetchable results available.

ct_results Fetchable results, if CS_SUCCEED and
*result_type equals CS_ROW_RESULT,
CS_COMPUTE_RESULT,
CS_PARAM_RESULT, or
CS_STATUS_RESULT.

Fetchable cursor results, if CS_SUCCEED
and *result_type equals
CS_CURSOR_RESULT.

Idle, if CS_CANCELED or
CS_END_RESULTS.

Undefined, if CS_FAIL.

ANSI-style
cursor
end-data

ct_bind ANSI-style cursor end-data.

ct_br_column ANSI-style cursor end-data.

ct_br_table ANSI-style cursor end-data.

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) ANSI-style cursor end-data if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) ANSI-style cursor end-data.

ct_cmd_props ANSI-style cursor end-data.

Beginning
State: Callable Routines: Resulting

Command State:

Table 2-21: Callable routines at each command state

2-98 Topics

Logical Sequence of Calls Open Client Release 10.0

ct_compute_info ANSI-style cursor end-data.

ct_describe ANSI-style cursor end-data.

ct_dyndesc ANSI-style cursor end-data.

ct_fetch ANSI-style cursor end-data, if
CS_END_DATA.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_getformat ANSI-style cursor end-data.

ct_res_info ANSI-style cursor end-data.

ct_results Non-fetchable results available, if
CS_SUCCEED and *result_type equals
CS_MSG_RESULT or CS_CMD_DONE.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Fetchable
results

ct_bind Fetchable results.

ct_br_column Fetchable results.

ct_br_table Fetchable results.

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Fetchable results, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) Non-fetchable results available, if
CS_SUCCEED.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_cmd_props Fetchable results.

ct_compute_info Fetchable results.

ct_describe Fetchable results.

ct_dyndesc Fetchable results.

ct_fetch Fetching results, if CS_SUCCEED or
CS_ROW_FAIL.

Non-fetchable results available, if
CS_END_DATA.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Beginning
State: Callable Routines: Resulting

Command State:

Table 2-21: Callable routines at each command state

Client-Library/C Reference Manual 2-99

Open Client Release 10.0 Logical Sequence of Calls

ct_getformat Fetchable results.

ct_res_info Fetchable results.

Fetchable
cursor results

ct_bind Fetchable cursor results.

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Fetchable cursor results, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) Non-fetchable results available, if
CS_SUCCEED.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_cmd_props Fetchable cursor results.

ct_cursor Fetchable nested command, if
CS_SUCCEED.

Fetchable cursor results, if CS_FAIL.

ct_describe Fetchable cursor results.

ct_dyndesc Fetchable cursor results.

ct_fetch Fetching cursor results, if CS_SUCCEED or
CS_ROW_FAIL.

Idle, if CS_CANCELED.
Non-fetchable results available, if

CS_END_DATA.
Ansi-style cursor end-data, if

CS_END_DATA and CS_ANSI_BINDS
property is set.

Undefined, if CS_FAIL.

ct_getformat Fetchable cursor results.

ct_res_info Fetchable cursor results.

Fetchable
nested
command

ct_cancel(CS_CANCEL_ALL) Fetchable cursor results, if CS_SUCCEED.
Fetchable nested command, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Fetchable nested command, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cmd_props Fetchable nested command.

ct_dyndesc Fetchable nested command.

Beginning
State: Callable Routines: Resulting

Command State:

Table 2-21: Callable routines at each command state

2-100 Topics

Logical Sequence of Calls Open Client Release 10.0

ct_param Fetchable nested command.

ct_send Sent fetchable nested, if CS_SUCCEED.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Sent fetchable
nested

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Sent fetchable nested, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cmd_props Sent fetchable nested.

ct_results Processing fetchable nested command, if
CS_CMD_SUCCEED or CS_CMD_FAIL.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Processing
fetchable
nested
command

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Processing fetchable nested command, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) Processing fetchable nested command, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cmd_props Processing fetchable nested command.

ct_dyndesc Processing fetchable nested command.

ct_res_info Processing fetchable nested command.

ct_results Fetchable cursor results, if
CS_END_RESULTS.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Fetching
results

ct_bind Fetching results.

ct_br_column Fetching results.

ct_br_table Fetching results.

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

Beginning
State: Callable Routines: Resulting

Command State:

Table 2-21: Callable routines at each command state

Client-Library/C Reference Manual 2-101

Open Client Release 10.0 Logical Sequence of Calls

ct_cancel(CS_CANCEL_ATTN) Fetching results, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) Non-fetchable results available, if
CS_SUCCEED.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_cmd_props Fetching results.

ct_compute_info Fetching results.

ct_data_info(CS_GET) Fetching results.

ct_describe Fetching results.

ct_dyndesc Fetching results, if CS_SUCCEED.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_fetch Fetching results, if CS_SUCCEED.
Non-fetchable results available, if

CS_END_DATA.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_get_data Fetching results, if CS_SUCCEED.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_getformat Fetching results.

ct_res_info Fetching results.

Fetching
cursor
results

ct_bind Fetching cursor results.

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Fetching cursor results, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) Non-fetchable results available, if
CS_SUCCEED.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_cmd_props Fetching cursor results.

Beginning
State: Callable Routines: Resulting

Command State:

Table 2-21: Callable routines at each command state

2-102 Topics

Logical Sequence of Calls Open Client Release 10.0

ct_cursor Fetching nested command, if
CS_SUCCEED.

Fetching cursor results, if CS_FAIL.

ct_describe Fetching cursor results.

ct_dyndesc Fetching cursor results, if CS_SUCCEED.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_fetch Fetching cursor results, if CS_SUCCEED.
Non-fetchable results available, if

CS_END_DATA.
Ansi-style cursor end-data, if

CS_END_DATA and CS_ANSI_BINDS
property is set.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_get_data Fetching cursor results, if CS_SUCCEED.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_getformat Fetching cursor results.

ct_keydata Fetching cursor results.

ct_res_info Fetching cursor results.

Fetching
nested
command

ct_cancel(CS_CANCEL_ALL) Fetching cursor results, if CS_SUCCEED.
Fetching nested command, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Fetching nested command, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cmd_props Fetching nested command.

ct_dyndesc Fetching nested command.

ct_param Fetching nested command.

ct_send Sent fetching nested command, if
CS_SUCCEED.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Sent fetching
nested
command

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

Beginning
State: Callable Routines: Resulting

Command State:

Table 2-21: Callable routines at each command state

Client-Library/C Reference Manual 2-103

Open Client Release 10.0 Logical Sequence of Calls

ct_cancel(CS_CANCEL_ATTN) Sent fetching nested command, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cmd_props Sent fetching nested command.

ct_results Processing fetching nested command, if
CS_CMD_SUCCEED or CS_CMD_FAIL.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Processing
fetching nested
command

ct_cancel(CS_CANCEL_ALL) Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Processing fetching nested command, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) Processing fetching nested command, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cmd_props Processing fetching nested command.

ct_dyndesc Processing fetching nested command.

ct_keydata Processing fetching nested command.

ct_res_info Processing fetching nested command.

ct_results Processing fetching nested command, if
CS_SUCCEED.

Fetching cursor results, if
CS_END_RESULTS.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Result set
canceled

ct_cancel(CS_CANCEL_ALL) Idle, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Idle, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cmd_drop Idle.

ct_cmd_props Idle.

ct_command Command initiated, if CS_SUCCEED.
Idle, if CS_FAIL.

ct_cursor Command initiated, if CS_SUCCEED.
Idle, if CS_FAIL.

Beginning
State: Callable Routines: Resulting

Command State:

Table 2-21: Callable routines at each command state

2-104 Topics

Logical Sequence of Calls Open Client Release 10.0

Initiated Commands

In addition to command states, Client-Library keeps track of initiated
commands. An initiated command can be in any one of the following

ct_dynamic Command initiated, if CS_SUCCEED.
Idle, if CS_FAIL.

ct_dyndesc Idle, if CS_SUCCEED, CS_ROW_FAIL, or
CS_CANCELED.

Undefined, if CS_FAIL.

ct_results Result set canceled, if CS_SUCCEED or
CS_FAIL.

Idle, if CS_CANCELED.

ct_sendpassthru Result set canceled.

Undefined ct_cancel(CS_CANCEL_ALL) Idle, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Undefined.

ct_cmd_props Undefined.

ct_dyndesc Undefined.

In receive
passthrough

ct_cancel(CS_CANCEL_ALL) Idle, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) In receive passthrough, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cmd_props In receive passthrough.

ct_recvpassthru Idle, if CS_PASSTHRU_EOM or
CS_CANCELED.

Undefined, if CS_FAIL.

In send
passthrough

ct_cancel(CS_CANCEL_ALL) Idle, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) In send passthrough, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cmd_props In send passthrough.

ct_sendpassthru Command sent, if CS_PASSTHRU_EOM.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Beginning
State: Callable Routines: Resulting

Command State:

Table 2-21: Callable routines at each command state

Client-Library/C Reference Manual 2-105

Open Client Release 10.0 Logical Sequence of Calls

states.

Initiated Command: What it Indicates:

Idle The application either hasn’t yet initiated a
command or has completely processed the results
of the last command.

Idle, with
declared cursor

The application initiated a cursor declare
command (ct_cursor(CS_CURSOR_DECLARE)), sent
the command to the server, and completely
processed the results.

Idle, with
opened cursor

The application initiated a cursor open command
(ct_cursor(CS_CURSOR_OPEN)) and fetched all the
results (ct_results returned CS_END_RESULTS), but
has not yet closed the cursor.

Opened cursor,
no rows fetched

The application called ct_results, but hasn’t yet
processed any of the results.

Opened cursor,
fetching rows

The application called ct_fetch at least once and is
currently in the process of fetching results.

Command
initiated

The application initiated a language, message,
package, or RPC command via ct_command.

Sent data The application initiated a send-data or send-
bulk-data command via ct_command.

Declared cursor The application initiated a cursor declare
command (ct_cursor(CS_CURSOR_DECLARE)), but
hasn’t yet sent it to a server via ct_send.

Set cursor rows The application initiated a cursor rows command
via ct_cursor(CS_CURSOR_ROWS).

Opened cursor The application initiated a cursor open command
(ct_cursor(CS_CURSOR_OPEN)), but hasn’t yet sent
it to a server.

Closed cursor The application initiated a cursor close command
(ct_cursor(CS_CURSOR_CLOSE)) but hasn’t yet sent
it to a server.

De-allocated
cursor

The application initiated a cursor de-allocate
command (ct_cursor(CS_CURSOR_DEALLOC)) but
hasn’t yet sent it to a server.

Updated cursor
row

The application initiated a cursor update
command (ct_cursor(CS_CURSOR_UPDATE)) but
hasn’t yet sent it to a server.

Table 2-22: Initiated command states

2-106 Topics

Logical Sequence of Calls Open Client Release 10.0

Initiated Command Routines

The following Client-Library routines are useful for processing
initiated commands:

Deleted cursor
row

The application initiated a cursor delete command
(ct_cursor(CS_CURSOR_DELETE)) but hasn’t yet
sent it to a server.

Dynamic cursor
declared

The application initiated a cursor declare
command on a dynamically prepared SQL
statement (ct_dynamic(CS_CURSOR_DECLARE))
but hasn’t yet sent it to a server.

Dynamic
de-allocated

The application initiated a command to de-
allocate a prepared SQL statement
(ct_dynamic(CS_DEALLOC)) but hasn’t yet sent it to
a server.

Dynamic
described

The application initiated a command to retrieve
input parameter information
(ct_dynamic(CS_DESCRIBE_INPUT)) or column list
information (ct_dynamic(CS_DESCRIBE_OUTPUT))
but hasn’t yet sent it to a server.

Dynamic executed The application initiated a command to execute a
prepared SQL statement
(ct_dynamic(CS_EXECUTE)) but hasn’t yet sent it to
a server.

Dynamic execute
immediate

The application initiated a command to execute a
literal SQL statement
(ct_dynamic(CS_EXEC_IMMEDIATE)) but hasn’t yet
sent it to a server.

Dynamic prepare The application initiated a command to prepare a
SQL statement (ct_dynamic(CS_PREPARE)) but
hasn’t yet sent it to a server.

ct_send_data
succeeded

The application successfully called ct_send_data at
least once.

Bulk copy The application initiated a send-bulk-data
command (ct_command(CS_SEND_BULK_CMD))
but hasn’t yet sent it to a server.

Initiated Command: What it Indicates:

Table 2-22: Initiated command states (continued)

Client-Library/C Reference Manual 2-107

Open Client Release 10.0 Logical Sequence of Calls

ct_cmd_drop ct_dyndesc
ct_command ct_param
ct_cursor ct_send_data
ct_data_info ct_sendpassthru
ct_dynamic

Callable Routines for Initiated Commands

This table maps each initiated command state to the Client-Library
routines that an application can legally call while in that state.

Where (none) is specified, it indicates that an application can call none
of the routines listed above. From within those states that map to a
(none) value in the Callable Routines column, an application’s only
options are to either send (ct_send) or cancel (ct_cancel) the initiated
command.

Initiated Command: Callable Routines:

Idle ct_cmd_drop
ct_command(CS_LANG_CMD)
ct_command(CS_MSG_CMD)
ct_command(CS_PACKAGE_CMD)
ct_command(CS_RPC_CMD)
ct_command(CS_SEND_BULK_CMD)
ct_command(CS_SEND_DATA_CMD)
ct_cursor(CS_CURSOR_DECLARE)
ct_dynamic(CS_CURSOR_DECLARE)
ct_dynamic(CS_DEALLOC)
ct_dynamic(CS_DESCRIBE_INPUT)
ct_dynamic(CS_DESCRIBE_OUTPUT)
ct_dynamic(CS_EXECUTE)
ct_dynamic(CS_EXEC_IMMEDIATE)
ct_dynamic(CS_PREPARE)
ct_sendpassthru

Idle, with
declared cursor

ct_cursor(CS_CURSOR_ROWS)
ct_cursor(CS_CURSOR_OPEN)
ct_cursor(CS_CURSOR_CLOSE, CS_DEALLOC)
ct_cursor(CS_CURSOR_DEALLOC)
ct_dynamic(CS_DEALLOC)

Idle, with
opened cursor

ct_cursor(CS_CURSOR_CLOSE)
ct_cursor(CS_CURSOR_CLOSE, CS_DEALLOC)
ct_dynamic(CS_DEALLOC)

Opened cursor,
no rows fetched

ct_cursor(CS_CURSOR_CLOSE)
ct_cursor(CS_CURSOR_CLOSE, CS_DEALLOC)

Table 2-23: Callable routines for initiated commands

2-108 Topics

Logical Sequence of Calls Open Client Release 10.0

Result Types

If a command is in one of the following states:

Opened cursor,
fetching rows

ct_cursor(CS_CURSOR_CLOSE)
ct_cursor(CS_CURSOR_CLOSE, CS_DEALLOC)
ct_cursor(CS_CURSOR_UPDATE)
ct_cursor(CS_CURSOR_DELETE)

Command
initialized

ct_dyndesc(CS_USE_DESC)
ct_param

Sent data ct_data_info(CS_SET)
ct_send_data

Declared cursor ct_cursor(CS_CURSOR_ROWS)
ct_cursor(CS_CURSOR_OPEN)
ct_cursor(CS_CURSOR_OPTION)
ct_dyndesc(CS_USE_DESC)
ct_param

Set cursor rows ct_cursor(CS_CURSOR_OPEN)

Opened cursor ct_dyndesc(CS_USE_DESC)
ct_param

Closed cursor (None)

De-allocated cursor (None)

Updated cursor row ct_dyndesc(CS_USE_DESC)
ct_param

Deleted cursor row (None)

Dynamic declared (None)

Dynamic de-allocated (None)

Dynamic described (None)

Dynamic executed ct_dyndesc(CS_USE_DESC)
ct_param

Dynamic execute
immediate

(None)

Dynamic prepare ct_dyndesc(CS_USE_DESC)
ct_param

ct_send_data succeeded ct_send_data

Bulk copy ct_send_data

Initiated Command: Callable Routines:

Table 2-23: Callable routines for initiated commands (continued)

Client-Library/C Reference Manual 2-109

Open Client Release 10.0 Logical Sequence of Calls

Results available
Fetchable results
Fetchable cursor results
Fetchable nested command
Sent fetchable nested command
Processing fetchable nested command
Fetching results
Fetching cursor results

Fetching nested command
Sent fetching nested command
Processing fetching nested command

Client-Library pre-defines which routines can be called, based on the
result type.

The following table briefly describes the different result types:

Result Type: Description:

Regular row
results

Zero or more rows of tabular data generated by the
execution of a Transact-SQL select statement.

Cursor row
results

Zero or more rows of tabular data generated when
an application executes a Client-Library cursor open
command.

Parameter
results

A single row of message parameters or stored
procedure return parameters.

Stored procedure
return status
results

A single row containing a single value (a return
status).

Message results No data is available, but an application can call
ct_res_info to get the message’s id.

Compute row
results

A single row of tabular data with a number of
columns equal to the number of columns listed in
the compute clause that generated the compute row.

CS_CMD_DONE The results of a command have been completely
processed.

CS_CMD_SUCCEED A command that returns no data (such as a
language command containing a Transact-SQL insert
statement) was successful.

CS_CMD_FAIL The server encountered an error while executing a
command.

Table 2-24: Result types

2-110 Topics

Logical Sequence of Calls Open Client Release 10.0

See the Results topics page for detailed information about the various
types of results.

Result Type Processing Routines

The following Client-Library routines are useful for processing
various types of results:

ct_bind ct_describe
ct_br_column ct_dyndesc
ct_br_table ct_getformat
ct_compute_info ct_keydata
ct_data_info ct_res_info

Callable Routines for Each Result Type

When an application calls ct_results to find out what kind of results are
available, Client-Library defines which routines are callable based on
the value of ct_results’ *result_type parameter.

Regular row
format results

Format information for an associated regular row
result set.

Compute row
format results

Format information for an associated compute row
result set.

Describe results Descriptive information returned as the result of a
dynamic SQL describe input or output command.

Extended error
data results

A single row of extended error data.

Notification
results

A single row of arguments with which a registered
procedure was called.

Result Type: Description:

Table 2-24: Result types

Client-Library/C Reference Manual 2-111

Open Client Release 10.0 Logical Sequence of Calls

This table maps each result type to the Client-Library routines that an
application can legally call to process that result type.

Result Type: Callable Routines:

Regular row results ct_bind
ct_br_column
ct_br_table
ct_data_info(CS_GET)
ct_describe
ct_getformat
ct_res_info(CS_BROWSE_INFO)
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_NUMORDERCOLS)
ct_res_info(CS_ORDERBY_COLS)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)

Cursor row results ct_bind
ct_describe
ct_getformat
ct_keydata
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_CMD_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)

Parameter results ct_bind
ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)

Stored procedure
return status results

ct_bind
ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_CMD_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)

Message results ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_MSGTYPE)
ct_res_info(CS_TRANS_STATE)

Table 2-25: Callable routines for each result type

2-112 Topics

Logical Sequence of Calls Open Client Release 10.0

Compute row results ct_bind
ct_compute_info
ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUM_COMPUTES)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)

CS_CMD_DONE ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ROW_COUNT)
ct_res_info(CS_TRANS_STATE)

CS_CMD_SUCCEED ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ROW_COUNT)
ct_res_info(CS_TRANS_STATE)

CS_CMD_FAIL ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ROW_COUNT)
ct_res_info(CS_TRANS_STATE)

Regular row format
results

ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_CMD_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)

Compute row format
results

ct_compute_info
ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUM_COMPUTES)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)

Describe results ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)

Extended error data
results

ct_bind
ct_describe
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)

Notification results ct_bind
ct_describe
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)

Result Type: Callable Routines:

Table 2-25: Callable routines for each result type (continued)

Client-Library/C Reference Manual 2-113

Open Client Release 10.0 Logical Sequence of Calls

Pending Results

Multiple command structures sharing the same connection can block
one another when results are pending on the connection. ‘Pending
results’ is a term that indicates that the results of a command have not
yet been completely processed. For example, assume two
CS_COMMAND structures (A and B) sharing the same CS_CONNECTION
structure. If A is in the Results Available state, B is blocked from
sending a command to the server because there are results pending on
the connection. B will remain blocked until A processes all the results
of the current command and transitions into a state that indicates that
no results are pending.

States that indicate pending results are:

Command sent
Results available
ANSI-style cursor end-data
Fetchable results
Sent fetchable nested command
Processing fetchable nested command
Fetching results
Sent fetching nested command
Undefined
In receive passthrough
In send passthrough

States that do not indicate pending results are:

Idle
Command initiated
Fetchable cursor results
Fetchable nested command
Fetching cursor results
Fetching nested command
Processing fetching nested command
Result set canceled

2-114 Topics

Message Commands and Results Open Client Release 10.0

Message Commands and Results

Message commands and results provide a way for clients and servers
to communicate specialized information to one another.

For example, if the CS_OPT_GETDATA option is enabled, then on every
insert, delete, or update SQL Server returns a message with parameters
that allows a client application to construct the name of the temporary
table that SQL Server is using for the operation.

Message Commands

To send a message command:

1. Call ct_command to initiate the command.

2. Call ct_param once for each parameter that the message requires.

3. Call ct_send to send the message command.

Message Results

ct_results sets its *result_type parameter to CS_MSG_RESULT to indicate a
message result set.

A message result set contains no fetchable data. Rather, a message has
an “id,” which an application can retrieve by calling ct_res_info.

Any parameters associated with a message are returned in the form of
a parameter result set following the message result set.

Legal Message Ids

Ids for user-defined messages must be greater than or equal to
CS_USER_MSGID and less than or equal to CS_USER_MAX_MSGID.

Client-Library/C Reference Manual 2-115

Open Client Release 10.0 Open Client Macros

Open Client Macros

Macros are C language definitions that typically take one or more
arguments and expand into inline C code when the source file is pre-
processed. The following sections introduce you to the Open Client
macros by presenting them in their functional contexts.

Decoding a Message Number

Client-Library and CS-Library message numbers consist of four
components: layer, origin, severity, and number.

Open Client provides the following macros to help an application
decode a Client-Library or CS-Library message number and break it
into its four parts so that each component can be displayed separately:

• CS_LAYER(msg_number) - identifies the layer reporting the error.

• CS_ORIGIN(msg_number) - indicates where the error manifested itself.

• CS_SEVERITY(msg_number) - indicates the severity of the error.

• CS_NUMBER(msg_number) - identifies the actual layer-specific error
number being reported.

These macros are defined in the header file cstypes.h.

See the Client-Library Messages topics page for more information about
Client-Library message numbers.

For information on CS-Library error handling, see the Open Client and
Open Server Common Libraries Reference Manual.

Manipulating Bits in a CS_CAP_TYPE Structure

Capabilities describe features that a client/server connection
supports. Each connection’s capability information is stored in a
CS_CAP_TYPE structure.

Client-Library provides the following macros to enable an application
to clear, set, and test bits in a CS_CAP_TYPE structure:

• CS_CLR_CAPMASK(mask, capability) - clears bits in a CS_CAP_TYPE
structure.

• CS_SET_CAPMASK(mask, capability) - sets bits in a CS_CAP_TYPE
structure.

2-116 Topics

Open Client Macros Open Client Release 10.0

• CS_TST_CAPMASK(mask, capability) - tests bits in a CS_CAP_TYPE
structure.

where mask is a pointer to a CS_CAP_TYPE structure and capability is the
capability of interest.

These macros are defined in the header file cspublic.h.

See the Capabilities topic page for more information about capabilities.

Using the sizeof Operator

The C sizeof operator returns the size of a specified item in bytes.
Because the datatype of its return value varies from platform to
platform, using sizeof can be problematic for Client-Library
applications. In particular, specifying sizeof as an argument to a
Client-Library routine may result in a compiler error or warning if the
type returned is not a CS_INT.

Client-Library provides the following macro to enable an application
to use the sizeof function with Client-Library:

• CS_SIZEOF - casts a value to a CS_INT.

This macro is defined in the header file cstypes.h.

Client-Library/C Reference Manual 2-117

Open Client Release 10.0 Options

Options

A Client-Library application can set and clear SQL Server query-
processing options in one of two ways:

• Through a Transact-SQL language command (set)

• By calling ct_options

An application must use only one of these methods, because otherwise
Client-Library/server communications can become confused.

The ct_options method is recommended, because it has the advantage of
allowing an application to check the status of an option, which cannot
be done through the Transact-SQL set command.

For more information on SQL Server query-processing options, see the
set command in the SQL Server Reference Manual.

Symbolic Constants for Server Options

The following table lists the symbolic constants that are used with
ct_options:

Symbolic Constant: What the Option Does: Default Value:

CS_OPT_ANSINULL Determines whether or not evaluation of
NULL-valued operands in SQL equality
(=) or inequality (!=) comparisons is ANSI-
compliant.

If CS_TRUE, SQL Server enforces the ANSI
behavior that “= NULL” and “is NULL”
are not equivalent. In standard Transact
SQL, “= NULL” and “is NULL” are
considered to be equivalent.

This option affects “<> NULL” and “is not
NULL” behavior in a similar fashion.

CS_FALSE

CS_OPT_ANSIPERM Determines whether or not SQL Server is
ANSI-compliant with respect to
permissions checks on update and delete
statements.

If CS_TRUE, SQL Server is ANSI-
compliant.

CS_FALSE

Table 2-26: Symbolic constants for server options

2-118 Topics

Options Open Client Release 10.0

CS_OPT_ARITHABORT Determines how SQL Server behaves when
an arithmetic error occurs.

** If CS_TRUE, both the arith_overflow and
numeric_truncation options are set on. An
entire transaction or batch in which an
error occurred is rolled back when a
divide-by-zero error or a loss of precision
occurs during either an explicit or implicit
datatype conversion. If a loss of scale by an
exact numeric type during an implicit
datatype conversion occurs, the statement
that caused the error is aborted, but the
other statements in the transaction or batch
continue to be processed.

** If CS_FALSE, both the arith_overflow and
numeric_truncation options are set off. The
statement that caused a divide-by-zero
error or a loss of precision during either an
explicit or implicit datatype conversion is
aborted, but the other statements in the
transaction or batch continue to be
processed. If a loss of scale by an exact
numeric type during an implicit datatype
conversion occurs, the query results are
truncated and other statements in the
transaction or batch continue to be
processed.

CS_FALSE

CS_OPT_ARITHIGNORE Determines whether SQL Server displays a
message after a divide-by-zero error or a
loss of precision.

If CS_TRUE, warning message are
suppressed after these errors.

If CS_FALSE, warning messages are
displayed after these errors.

CS_FALSE

CS_OPT_AUTHOFF Turns the specified authorization level off
for the current server session. When a user
logs in, all authorizations granted to that
user are automatically turned off.

Not applicable

CS_OPT_AUTHON Turns the specified authorization level on
for the current server session. When a user
logs in, all authorizations granted to that
user are automatically turned on.

Not applicable

Symbolic Constant: What the Option Does: Default Value:

Table 2-26: Symbolic constants for server options (continued)

Client-Library/C Reference Manual 2-119

Open Client Release 10.0 Options

CS_OPT_CHAINXACTS If CS_TRUE, SQL Server uses chained
transaction behavior. Chained transaction
behavior means that each server command
is considered to be a distinct transaction.
SQL Server implicitly executes a begin
transaction before any of the following
statements: delete, fetch, insert, open, select,
and update.

If CS_FALSE, an application must specify
an explicit commit transaction statement to
end a transaction and begin a new one.

CS_FALSE

CS_OPT_CURCLOSEONXACT If CS_TRUE, all cursors opened within a
transaction are closed when the transaction
completes.

CS_FALSE

CS_OPT_CURREAD Sets a security label specifying the current
read level.

NULL

CS_OPT_CURWRITE Sets a security label specifying the current
write level.

NULL

CS_OPT_DATEFIRST Sets the “first” day of the week. For us_english, the
default is
CS_OPT_SUNDAY.

CS_OPT_DATEFORMAT Sets the order of the date parts
month/day/year for entering datetime or
smalldatetime data.

For us_english, the
default is
CS_OPT_FMTMDY.

CS_OPT_FIPSFLAG Determines whether SQL Server displayss
a warning message when SQL extensions
are used.

If CS_TRUE, SQL Server flags any non-
standard SQL commands that are sent.

If CS_FALSE, SQL Server does not flag
non-ANSI SQL.

CS_FALSE

CS_OPT_FORCEPLAN If CS_TRUE, SQL Server joins tables in the
order in which the tables are listed in the
from clause of the query.

CS_FALSE

CS_OPT_FORMATONLY If CS_TRUE, SQL Server sends back a
description of the data, rather than the data
itself, in response to a select query.

If CS_FALSE, SQL Server sends back data
in response to a select query.

CS_FALSE

Symbolic Constant: What the Option Does: Default Value:

Table 2-26: Symbolic constants for server options (continued)

2-120 Topics

Options Open Client Release 10.0

CS_OPT_GETDATA If CS_TRUE, on every insert, delete, or
update statement, SQL Server returns
information (in the form of a message
result set and parameters) that an
application can use to construct the name
of the temporary table that will contain the
rows to be inserted and/or deleted.

Note that an update consists of insertions
and deletions.

CS_FALSE

CS_OPT_IDENTITYOFF Disables inserts into a table’s IDENTITY
column.

For more information, see the set
command (identity_insert option) in the
SQL Server documentation.

Not applicable

CS_OPT_IDENTITYON Enables inserts into a table’s IDENTITY
column.

For more information, see the set
command (identity_insert option) in the
SQL Server documentation.

Not applicable

CS_OPT_ISOLATION Specifies a transaction isolation level.
Possible levels are CS_OPT_LEVEL1 and
CS_OPT_LEVEL3.

If CS_OPT_LEVEL1, shared locks are
placed on all accessed pages of tables
specified in a select query’s from clause.
The locks are held for the duration of a
transaction.

If CS_OPT_LEVEL3, hold locks are placed
on all accessed pages of tables specified in
a select query’s from clause. The locks are
held for the duration of the transaction.

CS_OPT_LEVEL1

CS_OPT_NOCOUNT Turns off the display of the number of rows
affected by each SQL statement. An
application can ordinarily obtain this
information by calling ct_res_info.

CS_FALSE

CS_OPT_NOEXEC If CS_TRUE, SQL Server compiles each
query but does not execute it.

Use this option in conjunction with
CS_OPT_SHOWPLAN.

CS_FALSE

Symbolic Constant: What the Option Does: Default Value:

Table 2-26: Symbolic constants for server options (continued)

Client-Library/C Reference Manual 2-121

Open Client Release 10.0 Options

CS_OPT_PARSEONLY If CS_TRUE, SQL Server checks the syntax
of each query and returns any error
messages as necessary, but does not
execute the query.

CS_FALSE

CS_OPT_QUOTED_IDENT If CS_TRUE, SQL Server treats all strings
enclosed in double quotes (“) as identifiers.

CS_FALSE

CS_OPT_RESTREES If CS_TRUE, SQL Server checks the syntax
of each query and returns parse resolution
trees (in the form of image columns in a
regular row result set) and error messages
as necessary, but does not execute the
query.

CS_FALSE

CS_OPT_ROWCOUNT If set to 0, all rows generated by a select
statement are returned.

If set to a value greater than 0, SQL Server
returns up to the specified number of
regular rows for each select statement.

This option is always on, never off.

This option does not limit the number of
compute rows returned.

0.

CS_OPT_SHOWPLAN Detemines whether a description of each
query’s processing plan is returned
between its compilation and execution.

If CS_TRUE, SQL Server compiles a query,
generates a description of its processing
plan, and then executes the query.

CS_FALSE

CS_OPT_STATS_IO Determines whether SQL Server internal
I/O statistics (the number of scans, logical
reads, physical reads, and pages written)
are returned for each query.

If CS_TRUE, statistics are returned.

These statistics are returned to Client-
Library in the form of informational server
messages. Application programs can
access them through the user-supplied
server message handler.

CS_FALSE

Symbolic Constant: What the Option Does: Default Value:

Table 2-26: Symbolic constants for server options (continued)

2-122 Topics

Options Open Client Release 10.0

CS_OPT_STATS_TIME Determines whether SQL Server parsing,
compilation, and execution time statistics
are returned for each query.

If CS_TRUE, statistics are returned.

These statistics are returned to Client-
Library in the form of informational server
messages. Application programs can
access them through the user-supplied
server message handler.

CS_FALSE

CS_OPT_STR_RTRUNC If CS_TRUE, SQL Server is ANSI-
compliant with respect to right truncation
of character data.

CS_FALSE

CS_OPT_TEXTSIZE Specifies the value of the SQL Server global
variable @@textsize, which limits the size of
text or image values that SQL Server
returns.

When setting this option, supply a
parameter which is the length, in bytes, of
the longest text or image value that SQL
Server should return.

In programs that allow application users to
run ad hoc queries, the user may override
this option with the Transact-SQL set
textsize command. To set a text limit that
the user cannot override, use the Client-
Library CS_TEXTLIMIT property instead.

32,768 bytes

CS_OPT_TRUNCIGNORE If CS_TRUE, SQL Server ignores
truncation errors. This is standard ANSI
behavior.

If CS_FALSE, SQL Server raises an error
when conversion results in truncation.

CS_FALSE

Symbolic Constant: What the Option Does: Default Value:

Table 2-26: Symbolic constants for server options (continued)

Client-Library/C Reference Manual 2-123

Open Client Release 10.0 Parameter Conventions

Parameter Conventions

This topics page contains information on Client-Library parameter
conventions.

Exceptions to these conventions are documented on the manual pages
for the routines for which the exceptions occur.

NULL and Unused Parameters

This section contains information on NULL and unused parameters.

Pointer Parameters

A pointer parameter can:

• Have a non-NULL value

• Have a value of NULL

• Be unused

Pass NULL and unused pointer parameters as NULL.

If the parameter has a NULL value, the length variable associated with
the parameter, if any, must be 0 or CS_UNUSED.

If the parameter is unused, the length variable associated with the
parameter, if any, must be CS_UNUSED.

Client-Library uses current programming context information to
determine whether to interpret the parameter as NULL or unused.

Non-Pointer Parameters

Pass non-pointer unused parameters as CS_UNUSED.

Input Parameter Strings

Most string parameters are associated with a parameter that indicates
the length of the string.

When passing a null-terminated string, an application can pass the
length parameter as CS_NULLTERM.

When passing a string that is not null-terminated, an application must
set the associated length parameter to the length, in bytes, of the string.

2-124 Topics

Parameter Conventions Open Client Release 10.0

If a string parameter is NULL the associated length parameter must be
0 or CS_UNUSED.

Output Parameter Strings

An application indicates the length of a string buffer by setting an
associated length parameter.

If the length parameter indicates that the buffer is not large enough to
hold a null-terminated output string, Client-Library routines return
CS_FAIL.

Pointers to Basic Structures

All Client-Library routines take a pointer to a CS_CONTEXT structure, a
CS_CONNECTION structure, or a CS_COMMAND structure as a
parameter.

An application must allocate these structures (via cs_ctx_alloc,
ct_con_alloc, or ct_cmd_alloc) before using them as parameters.

If an application passes an invalid structure pointer to a Client-Library
routine, the routine returns CS_FAIL but Client-Library does not call the
application‘s client message callback routine. This is because Client-
Library stores the location of the client message callback in the
CS_CONTEXT, CS_CONNECTION, and CS_COMMAND structures.

Item Numbers

Many Client-Library routines that process results or return
information about results take an “item number” as a parameter. An
item number identifies a result item in a result set, and can be a column
number, a compute column number, a parameter number, or a return
status number.

Item numbers start at 1 and never exceed the number of items in the
current result set. An application can call ct_res_info with type as
CS_NUMDATA to get the number of items in the current result set.

When the result set contains columns, item is a column number.
Columns are returned to an application in select-list order.

When the result set contains compute columns, item is the column
number of a compute column. Compute columns are returned in the
order in which they are listed in the compute clause.

Client-Library/C Reference Manual 2-125

Open Client Release 10.0 Parameter Conventions

When the result set contains parameters, item is a parameter number.
Stored procedure return parameters are returned in the same order as
the parameters were originally specified in the stored procedure’s
create procedure statement. This is not necessarily the same order as
specified in the RPC command that invoked the stored procedure. In
determining what number to pass as item do not count non-return
parameters. For example, if the second parameter in a stored
procedure is the only return parameter, pass item as 1.

When the result set contains a return status, item is always 1, as there
can be only a single status in a return status result set.

action, buffer, buflen, and outlen

Many Client-Library routines use some combination of the
parameters action, buffer, buflen, and outlen.

action describes whether to set or retrieve information. For most
routines, action can take the symbolic values CS_GET, CS_SET, and
CS_CLEAR.

If action is CS_CLEAR, buffer must be NULL and buflen must be
CS_UNUSED.

buffer is typically a pointer to program data space.

If information is being set, buffer points to the value to use in setting
the information.

If information is being retrieved, buffer points to the space in which
the Client-Library routine will place the requested information.

If information is being cleared, buffer must be NULL.

If the Client-Library routine returns CS_FAIL, *buffer remains
unchanged.

buflen is the length, in bytes, of the buffer data space.

If information is being set and the value in *buffer is null-termi-
nated, pass buflen as CS_NULLTERM.

If *buffer is a fixed-length value, a symbolic value, or a function,
buflen must be CS_UNUSED.

If buffer is NULL, buflen must be 0 or CS_UNUSED.

outlen is a pointer to an integer variable.

outlen must be NULL if information is being set.

2-126 Topics

Parameter Conventions Open Client Release 10.0

When information is being retrieved, outlen is an optional
parameter. If supplied, Client-Library sets the variable to the
length, in bytes, of the requested information (including a null
terminator, if applicable).

If the information is longer than buflen bytes, an application can use
the value of *outlen to determine how many bytes are needed to
hold the information.

The following table summarizes the interaction between action,
buffer, buflen, and outlen:

action: buffer: buflen: outlen: What Happens

CS_CLEAR NULL CS_UNUSED NULL The Client-Library information
is cleared by resetting it to its
default value.

CS_SET A pointer to a
null-terminated
character string.

CS_NULLTERM
or the length of
the string, not
including the
null terminator.

NULL The Client-Library information
is set to the value of the *buffer
character string.

CS_SET A pointer to a
character string
that is not null-
terminated.

The length of the
string.

NULL The Client-Library information
is set to the value of the *buffer
character string.

CS_SET A pointer to a
variable-length,
non-character
value. (For
example, binary
data.)

The length of the
data.

NULL The Client-Library information
is set to the value of the *buffer
data.

CS_SET A pointer to a
fixed-length or
symbolic value.

CS_UNUSED NULL The Client-Library information
is set to the value of the integer
or symbolic value.

CS_SET NULL 0 or CS_UNUSED NULL The Client-Library information
is set to NULL.

CS_GET A pointer to
space large
enough for the
return character
string plus a null
terminator.

The length of
*buffer.

Supplied
or NULL

The return value is copied to
*buffer.

A null-terminator is appended.

If supplied, *outlen is set to the
length of the return value,
including the null terminator.

Table 2-27: Interaction between action, buffer, buflen, and outlen parameters

Client-Library/C Reference Manual 2-127

Open Client Release 10.0 Parameter Conventions

CS_GET A pointer to
space that is not
large enough for
the return
character string
plus a null
terminator.

The length of
*buffer.

Supplied
or NULL

No data is copied to *buffer.

If supplied, *outlen is set to the
length of the return value,
including the null terminator.

The routine returns CS_FAIL.

CS_GET A pointer to
space that is large
enough for the
return variable-
length, non-
character data.

The length of
*buffer.

Supplied
or NULL

The return value is copied to
*buffer.

If supplied, *outlen is set to the
length of the return value.

CS_GET A pointer to
space that is not
large enough for
the return
variable-length,
non-character
data.

The length of
*buffer.

Supplied
or NULL

No data is copied to *buffer.

If supplied, *outlen is set to the
length of the return value.

The routine returns CS_FAIL.

CS_GET A pointer to
space that is
assumed to be
large enough for
a fixed-length or
symbolic value.

CS_UNUSED Supplied
or NULL

The return value is copied to
*buffer.

If supplied, *outlen is set to the
length of the return value.

action: buffer: buflen: outlen: What Happens

Table 2-27: Interaction between action, buffer, buflen, and outlen parameters (continued)

2-128 Topics

Properties Open Client Release 10.0

Properties

Properties define aspects of Client-Library behavior. For example, the
CS_NETIO property determines whether a connection is synchronous
or asynchronous, and the CS_HIDDEN_KEYS property determines
whether or not hidden keys returned as part of a result set are exposed.

Login properties are used when logging into a server. Login
properties include CS_USERNAME, CS_PASSWORD, and CS_PACKETSIZE.

A server can change the values of some login properties during the
log-in process. For example, if an application sets CS_PACKETSIZE to
2048 bytes and then logs into a server that cannot support this packet
size, the server will overwrite 2048 with a packet size it can support.
These types of properties are called negotiated properties.

Setting and Retrieving Properties

An application calls ct_config, ct_con_props, and ct_cmd_props to set and
retrieve Client-Library properties at the context, connection, and
command structure levels, respectively. An application calls cs_config
to set and retrieve CS-Library context properties.

When a connection structure is allocated, it picks up default property
values from its parent context. For example, if CS_TEXTLIMIT is set to
16,000 at the context level, then any connection created within this
context will have a default text limit value of 16,000. Likewise, when a
command structure is allocated, it picks up default property values
from its parent connection.

An application can override a default property value by calling
cs_config, ct_config, ct_con_props, or ct_cmd_props to change the value of the
property.

Most properties’ values can be either set or retrieved by an application,
but some properties are “retrieve only.”

Three Kinds of Context Properties

There are actually three kinds of context properties:

• Context properties specific to CS-Library

• Context properties specific to Client-Library

• Context properties specific to Server-Library

Client-Library/C Reference Manual 2-129

Open Client Release 10.0 Properties

cs_config sets and retrieves the values of CS-Library-specific context
properties. With the exception of CS_LOC_PROP, properties set via
cs_config affect only CS-Library. CS-Library-specific context properties
are listed on the manual page for cs_config in the Common Libraries
Reference Manual.

ct_config sets and retrieves the values of Client-Library-specific context
properties. Properties set via ct_config affect only Client-Library. Client-
Library-specific context properties are listed in Table 2-28: Client-
Library properties.

srv_props sets and retrieves the values of Server-Library-specific
context properties. Properties set via srv_props affect only Server-
Library.

Copying Login Properties

An application can copy login properties from an established
connection to a new connection structure. To do this, an application:

1. Allocates a connection structure (ct_con_alloc).

2. Customizes the connection (ct_con_props).

3. Opens the connection (ct_connect).

4. Calls ct_getloginfo to allocate a CS_LOGINFO structure and copy the
connection‘s login properties into it.

5. Allocates a second connection structure (ct_con_alloc).

6. Calls ct_setloginfo to copy login properties from the CS_LOGINFO
structure to the second connection structure. After copying the
properties, ct_setloginfo de-allocates the CS_LOGINFO structure.

7. Customizes any non-login properties in the second connection
(ct_con_props).

8. Opens the second connection (ct_connect).

2-130 Topics

Properties Open Client Release 10.0

Summary of Properties

The following table lists Client-Library properties. The context
properties in this table are set via ct_config. For a list of context
properties set via cs_config, see the manual page for cs_config in the Open
Client and Open Server Common Libraries Reference Manual.

Property name: What it is: Possible values:
Applicable
at what
level?

Notes

CS_ANSI_BINDS Whether or not to use
ANSI-style binds.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

CS_APPNAME The application name
used when logging into
the server.

A character string.

The default is
NULL.

Connection. Login property.

Cannot be set
after connection
is established.

CS_ASYNC_
NOTIFS

Whether a connection
will receive registered
procedure notifications
asynchronously.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection.

CS_BULK_LOGIN Whether or not a
connection is enabled
to perform bulk copy
“in” operations.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Login property.

Cannot be set
after connection
is established.

CS_CHARSETCNV Whether or not
character set
conversion is taking
place.

CS_TRUE or
CS_FALSE.

A default is not
applicable.

Connection. Retrieve only,
after connection
is established.

CS_COMMBLOCK A pointer to a
communication
sessions block.

This property is
specific to IBM-370
systems and is ignored
by all other platforms.

A pointer value.

The default is
NULL.

Connection. Cannot be set
after connection
is established.

Table 2-28: Client-Library properties

Client-Library/C Reference Manual 2-131

Open Client Release 10.0 Properties

CS_CON_STATUS The connection’s
status.

A CS_INT-sized bit-
mask.

For a list of
possible values, see
‘‘Connection
Status’’ on page 2-
138.

Connection. Retrieve only.

CS_CUR_ID The cursor’s
identification number.

An integer value.

A default is not
applicable.

Command. Retrieve only,
after CS_CUR_
STATUS
indicates an
existing cursor.

CS_CUR_NAME The cursor’s name, as
defined in an
application’s
ct_cursor(CS_CURSOR
_DECLARE) call.

A character string.

A default is not
applicable.

Command. Retrieve only,
after ct_cursor
(CS_CURSOR_
DECLARE)
returns
CS_SUCCEED.

CS_CUR_ROW
COUNT

The current value of
cursor rows. Cursor
rows is the number of
rows returned to
Client-Library per
internal fetch request.

An integer value.

A default is not
applicable.

Command. Retrieve only,
after CS_CUR_
STATUS
indicates an
existing cursor.

CS_CUR_STATUS The cursor’s status. A CS_INT-sized bit-
mask.

For a list of possible
values, see ‘‘Cursor
Status’’ on page 2-
140.

Command. Retrieve only.

CS_DIAG_
TIMEOUT

When in-line error
handling is in effect,
whether Client-
Library should fail or
retry on timeout errors.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means Client-
Library should
retry.

Connection.

Property name: What it is: Possible values:
Applicable
at what
level?

Notes

Table 2-28: Client-Library properties (continued)

2-132 Topics

Properties Open Client Release 10.0

CS_DISABLE_
POLL

Whether or not to
disable polling. If
polling is disabled,
ct_poll does not report
asynchronous
operation completions.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means that polling
is not disabled.

Context,
connection.

Useful in
layered
asynchronous
applications.

CS_EED_CMD A pointer to a
command structure
containing extended
error data.

A pointer value.

A default is not
applicable.

Connection. Retrieve only.

CS_ENDPOINT The file descriptor for a
connection.

An integer value.

A default is not
applicable.

Connection. Retrieve only,
after connection
is established.

CS_EXPOSE_FMTS Whether or not to
expose results of type
CS_ROWFMT_
RESULT and CS_COM
PUTEFMT_RESULT.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Cannot be set
after connection
is established.

CS_EXTRA_INF Whether or not to
return the extra
information that’s
required when
processing Client-
Library messages in-
line using a SQLCA,
SQLCODE, or
SQLSTATE.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

CS_HIDDEN_KEYS Whether or not to
expose hidden keys.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection,
command.

Cannot be set at
the command
level if results are
pending or a
cursor is open.

CS_HOSTNAME The host machine
name.

A character string.

The default is
NULL.

Connection. Login property.

Cannot be set
after connection
is established.

Property name: What it is: Possible values:
Applicable
at what
level?

Notes

Table 2-28: Client-Library properties (continued)

Client-Library/C Reference Manual 2-133

Open Client Release 10.0 Properties

CS_IFILE The path and name of
the interfaces file.

A character string.

The default varies
by platform. On
UNIX platforms,
the default is
$SYBASE/interfaces.

Context.

CS_LOC_PROP A CS_LOCALE
structure that defines
localization
information.

A CS_LOCALE
structure.

A connection picks
up default
localization
information from its
parent context.

Connection.

To set
CS_LOC_
PROP at the
context
level, call
cs_config.

Login property.

Cannot be set
after connection
is established.

CS_LOGIN_
STATUS

Whether or not the
connection is open.

CS_TRUE or
CS_FALSE.

A default is not
applicable.

Connection. Retrieve only.

CS_LOGIN_
TIMEOUT

The login timeout
value.

An integer value.

The default is 60
seconds. A value of
CS_NO_LIMIT
represents an
infinite timeout
period.

Context.

CS_MAX_
CONNECT

The maximum number
of connections for this
context.

An integer value.

The default varies
by platform. On
UNIX platforms,
the default is 25.

Context.

CS_MEM_POOL A memory pool that
Client-Library will use
to satisfy interrupt-
level memory
requirements.

A pointer value. Context. Useful in
asynchronous
applications.

Cannot be set or
cleared when
context has
connections.

Property name: What it is: Possible values:
Applicable
at what
level?

Notes

Table 2-28: Client-Library properties (continued)

2-134 Topics

Properties Open Client Release 10.0

CS_NETIO Whether network I/O
is synchronous, fully
asynchronous, or
deferred asynchronous.

CS_SYNC_IO,
CS_ASYNC_IO, or
CS_DEFER_IO.

The default is
CS_SYNC_IO.

Context,
connection.

Cannot be set for
a context with
open
connections.

CS_DEFER_IO
is legal only at
the context level.

CS_NO_TRUNCAT
E

Whether Client-
Library should
truncate or sequence
messages that are
longer than
CS_MAX_MSG.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means that Client-
Library truncates
long messages.

Context.

CS_NOINTERRUPT Whether or not the
application can be
interrupted.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means the
application can be
interrupted.

Context.

CS_NOTIF_CMD A pointer to a
command structure
containing registered
procedure notification
parameters.

A pointer value.

A default is not
applicable.

Connection. Retrieve only.

CS_PACKETSIZE The TDS packet size. An integer value.

The default varies
by platform. On
most platforms, the
default is 512 bytes.

Connection. Negotiated login
property.

Cannot be set
after connection
is established.

CS_PARENT_
HANDLE

The address of a
command or
connection structure’s
parent structure.

A pointer value. Connection,
command.

Retrieve only.

CS_PASSWORD The password used to
log into the server.

A character string.

The default is
NULL.

Connection. Login property.

Property name: What it is: Possible values:
Applicable
at what
level?

Notes

Table 2-28: Client-Library properties (continued)

Client-Library/C Reference Manual 2-135

Open Client Release 10.0 Properties

CS_SEC_
APPDEFINED

Whether or not the
connection will use
application-defined
challenge/response
security handshaking.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Cannot be set
after connection
is established.

CS_SEC_
CHALLENGE

Whether or not the
connection will use
Sybase-defined
challenge/response
security handshaking.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Cannot be set
after connection
is established.

CS_SEC_
ENCRYPTION

Whether or not the
connection will use
encrypted password
security handshaking.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Cannot be set
after connection
is established.

CS_SEC_
NEGOTIATE

Whether or not the
connection will use
trusted-user security
handshaking.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Cannot be set
after connection
is established.

CS_SERVERNAME The name of the server
to which a connection
is connected.

A string value.

A default is not
applicable.

Connection. Retrieve only,
after connection
is established.

CS_TDS_VERSION The version of the TDS
protocol that the
connection is using.

A symbolic version
level.

CS_TDS_VERSION
defaults to a value
based on
CS_VERSION.

Connection. Negotiated login
property.

Cannot be set
after connection
is established.

CS_TEXTLIMIT The largest text or
image value to be
returned on this
connection.

An integer value.

The default is
CS_NO_LIMIT.

Context,
connection.

CS_TIMEOUT The timeout value. An integer value.

The default is
CS_NO_LIMIT.

Context.

CS_TRANS
ACTION_NAME

A transaction name. A string value.

The default is
NULL.

Connection.

Property name: What it is: Possible values:
Applicable
at what
level?

Notes

Table 2-28: Client-Library properties (continued)

2-136 Topics

Properties Open Client Release 10.0

About the Properties

ANSI-Style Binds

• CS_ANSI_BINDS defines whether or not Client-Library will use

CS_USER_ALLOC A user-defined
memory allocation
routine.

A user-defined
function.

A default is not
applicable.

Context. Useful in
asynchronous
application.

CS_USER_FREE A user-defined
memory free routine.

A user-defined
function.

A default is not
applicable.

Context. Useful in
asynchronous
application.

CS_USERDATA User-allocated data. User-allocated data. Connection,
 command.

To set
CS_USER
DATA at
the context
level, call
cs_config.

CS_USERNAME The name used to log
into the server.

A character string.

The default is
NULL.

Connection. Login property.

Cannot be set
after connection
is established.

CS_VER_STRING Client-Library’s true
version string.

A character string.

A default is not
applicable.

Context. Retrieve only.

CS_VERSION The version of Client-
Library in use by this
context.

A symbolic version
level.

CS_VERSION gets
its value from a
context’s ct_init call.

Currently, the only
possible value is
CS_VERSION_100.

Context. Retrieve only.

Property name: What it is: Possible values:
Applicable
at what
level?

Notes

Table 2-28: Client-Library properties (continued)

Client-Library/C Reference Manual 2-137

Open Client Release 10.0 Properties

ANSI-style binds.

• When ANSI-style binds are in effect:

- It is considered an error to bind some, but not all, items in a result
set. An application must either bind none of the items or bind all
of the items.

- ct_fetch raises an error when copying a NULL or truncated
character string value into a variable with which no indicator is
associated.

In both of these cases, ct_fetch returns CS_ROW_FAIL.

Application Name

• CS_APPNAME defines the application name that a connection will
use when connecting to a server.

• SQL Server uses application names to identify connection
processes in the sysprocesses table of the master database.

Asynchronous Notifications

• CS_ASYNC_NOTIFS determines whether a connection will receive
registered procedure notifications asynchronously.

• If CS_ASYNC_NOTIFS is set to CS_TRUE, then Client-Library
interrupts the application to report an arriving registered
procedure notification. When Client-Library reports the
notification, the application’s notification callback is automatically
triggered.

• If CS_ASYNC_NOTIFS is CS_FALSE, then the application must be
reading from the network in order for Client-Library to report a
registered procedure notification. When Client-Library reports the
notification, the application’s notification callback is automatically
called.

Likewise, if CS_ASYNC_NOTIFS is CS_FALSE, ct_poll will not read
from the network. This means that an application must be
reading results in order for ct_poll to report a registered
procedure notification. When ct_poll reports the notification, the
application’s notification callback is automatically called.

• Setting CS_ASYNC_NOTIFS to CS_FALSE does not immediately turn
asynchronous notifications off. In order to truly turn asynchronous
notifications off, an application must send a command to the server
after setting CS_ASYNC_NOTIFS to CS_FALSE.

2-138 Topics

Properties Open Client Release 10.0

• CS_ASYNC_NOTIFS is the only property that determines whether
notifications are received asynchronously:

- An otherwise synchronous connection can receive asynchronous
notifications.

- An asynchronous connection will not receive notifications
asynchronously unless it sets CS_ASYNC_NOTIFS to CS_TRUE.

• For information on registered procedures, see the Registered
Procedures topics page, 2-157.

Bulk Copy Operations

• CS_BULK_LOGIN describes whether or not a connection can perform
bulk copy operations into a database.

• Applications that allow users to make ad hoc queries may want to
avoid setting this property to CS_TRUE, to keep users from initiating
a bulk copy sequence via SQL commands. Once a bulk copy
sequence is begun, it cannot be stopped with an ordinary SQL
command.

• For information on Bulk Copy, see the Common Libraries Reference
Manual.

Character Set Conversion

• CS_CHARSETCNV describes whether or not the server is converting
between the client and server character sets. This property is
retrieve-only, after a connection is established.

• A value of CS_TRUE indicates that the server is converting between
the client and server character sets; CS_FALSE indicates that no
conversion is taking place.

Communications Session Block

• The CS_COMMBLOCK property defines a pointer to a
communications block. This property is specific to IBM-370
systems and is ignored by all other platforms.

Connection Status

• CS_CON_STATUS is a CS_INT-sized bit-mask that reflects a
connection’s current status.

Client-Library/C Reference Manual 2-139

Open Client Release 10.0 Properties

• The following table lists the symbolic values that can make up
CS_CON_STATUS:

Cursor ID

• CS_CUR_ID is the server identification number assigned to a cursor.

• An application can retrieve a cursor’s identification number after
calling ct_cmd_props(CS_CUR_STATUS) to confirm that a cursor exists
in the command space of interest.

• CS_CUR_ID is a command structure property and cannot be
retrieved at the connection or context levels.

• Cursor properties are useful to gateway applications that send
cursor information to clients.

Cursor Name

• CS_CUR_NAME is the name with which a cursor was declared. An
application declares a cursor by calling
ct_cursor(CS_CURSOR_DECLARE).

• An application can retrieve a cursor’s name any time after its
ct_cursor(CS_CURSOR_DECLARE) call returns CS_SUCCEED.

Symbolic Value: To Indicate:

CS_CONSTAT_CONNECTED The connection is open.

CS_CONSTAT_DEAD The connection has been marked as “dead.”

Client-Library marks a connection as dead if
errors have made it unusable or if an
application’s client message callback
routine returns CS_FAIL.

An application must call ct_close and
ct_con_drop to close and drop connections
that have been marked as dead.

An exception to this rule occurs for certain
types of results-processing errors. If a
connection is marked dead while processing
results, the application can try calling
ct_cancel(CS_CANCEL_ALL or
CS_CANCEL_ATTN) to “revive” the
connection. If this fails, the application must
close and drop the connection.

Table 2-29: Bit values for the CS_CON_STATUS property

2-140 Topics

Properties Open Client Release 10.0

• CS_CUR_NAME is a command structure property and cannot be
retrieved at the connection or context levels.

• Cursor properties are useful to gateway applications that send
cursor information to clients.

Cursor Rowcount

• CS_CUR_ROWCOUNT is the current value of cursor rows for a cursor.

• Cursor rows is the number of rows returned to Client-Library per
internal fetch request. Note that this is not the number of rows
returned to an application per ct_fetch call. For more information on
cursor rows, see ‘‘Dynamic SQL Cursor Option’’ on page 3-95.

• An application can retrieve CS_CUR_ROWCOUNT after calling
ct_cmd_props(CS_CUR_STATUS) to confirm that a cursor exists in the
command space of interest.

• CS_CUR_ROWCOUNT is a command structure property and cannot
be retrieved at the connection or context levels.

• Cursor properties are useful to gateway applications that send
cursor information to clients.

Cursor Status

• CS_CUR_STATUS is a CS_INT-sized bit-mask that reflects a cursor’s
current status.

• The following table lists the symbolic values that can make up
CS_CUR_STATUS:

Symbolic Value: To Indicate:

CS_CURSTAT_CLOSED A closed cursor exists in the command space.
An application can re-open a closed cursor.

CS_CURSTAT_DECLARED A cursor is currently declared in this
command space.

CS_CURSTAT_NONE No cursor is declared in this command space.

CS_CURSTAT_OPEN An open cursor exists in the command space.

CS_CURSTAT_RDONLY The cursor is read-only and cannot be used to
perform updates.

CS_CURSTAT_UPDATABLE The cursor can be used to perform updates.

Table 2-30: Bit values for the CS_CUR_STATUS property

Client-Library/C Reference Manual 2-141

Open Client Release 10.0 Properties

• Cursor status is guaranteed to be accurate:

- After ct_results returns CS_SUCCEED with a *result_type parameter
of CS_CMD_SUCCEED, CS_CMD_FAIL, or CS_CURSOR_RESULT

- After ct_cancel(CS_CANCEL_ALL) returns CS_SUCCEED

- After any Client-Library or CS-Library routine returns
CS_CANCELED

• Calling ct_cancel can cause a connection’s cursors to enter an
undefined state. An application can use the cursor status property
to determine how a cancel operation has affected a cursor.

• CS_CUR_STATUS is a command structure property and cannot be
retrieved at the connection or context levels.

• Cursor properties are useful to gateway applications that send
cursor information to clients.

Diagnostic Timeout Fail

• When in-line error handling is in effect, the CS_DIAG_TIMEOUT
property determines whether Client-Library fails or retries on
Client-Library timeout errors.

• If CS_DIAG_TIMEOUT is CS_TRUE, Client-Library marks a connection
as dead when a Client-Library routine generates a timeout error.

• If CS_DIAG_TIMEOUT is CS_FALSE, Client-Library retries indefinitely
when a Client-Library routine generates a timeout error.

Disable Poll

• The CS_DISABLE_POLL property determines whether or not ct_poll
reports asynchronous operation completions.

• Layered asynchronous applications can use CS_DISABLE_POLL to
prevent ct_poll from reporting low-level asynchronous
completions.

• An application cannot call ct_wakeup if the CS_DISABLE_POLL
property is set to CS_TRUE.

• For more information on CS_DISABLE_POLL, see ‘‘Layered
Applications’’ on page 2-5.

Extended Error Data Command Structure

• The CS_EED_CMD property defines a pointer to a CS_COMMAND
structure containing extended error data.

2-142 Topics

Properties Open Client Release 10.0

• Within a server message callback, Client-Library indicates that
extended error data is available by setting the CS_HASEED bit of the
status field of the CS_SERVERMSG structure describing the message.

• It is an error to retrieve CS_EED_CMD if no extended error data is
available.

• For more information on extended error data, see ‘‘Extended Error
Data’’ on page 2-79.

Endpoint Polling

• CS_ENDPOINT allows an application to get a file descriptor, the
number associated with a connection to a remote server. This can
be useful to a gateway application that contains both Client-
Library and Server-Library calls: after establishing a connection to
a remote server with Client-Library, the file descriptor associated
with that connection can be used by the srv_poll Server-Library
routine. A call to srv_poll causes the current thread to be
rescheduled until there are results available on the connection.

• Use of the CS_ENDPOINT property is discouraged, since it is
currently specific only to UNIX platforms.

Expose Formats

• CS_EXPOSE_FMTS determines whether or not Client-Library
exposes format result sets.

• A format result set contains format information for the result set
with which it is associated. Format information includes the
number of items in the result set and a description of each item.
There are two types of format result sets:

- CS_ROWFMT_RESULT. This type of format result set contains
format information for a regular row result set.

- CS_COMPUTEFMT_RESULT. This type of format result set contains
format information for a compute row result set.

• All format result sets generated by a command precede the regular
row and compute row result sets generated by the command.

• If format result sets are not exposed, an application can only
retrieve format information while it is processing a result set. For
example, after ct_results returns CS_ROW_RESULT the application can
call ct_res_info to determine the number of columns in the result set,
ct_describe to get a description of each column, etc.

Client-Library/C Reference Manual 2-143

Open Client Release 10.0 Properties

Exposing format result sets allows an application to retrieve
format information before processing a result set.

• Exposing format result sets is useful in gateway applications that
need to repackage SQL Server results before sending them on to a
foreign client.

• An application can expose format result sets by setting the
CS_EXPOSE_FMTS property to CS_TRUE.

• For more information on format results, see ‘‘Format Results’’ on
page 2-166.

Extra Information

• CS_EXTRA_INF determines whether or not Client-Library returns
the extra information that ct_diag requires to fill in a SQLCA,
SQLCODE, or SQLSTATE structure.

• This extra information includes the number of rows affected by the
most recent command.

• If an application is not retrieving messages into a SQLCA, SQLCODE,
or SQLSTATE, the extra information is returned as ordinary Client-
Library messages.

Hidden Keys

• CS_HIDDEN_KEYS determines whether or not Client-Library
exposes any “hidden keys” that are part of a result set. Hidden
keys are columns that are not explicitly selected in a query, but
which are returned to a client because they make up part or all of a
table’s key.

Ordinarily, the presence of these columns is suppressed. The
client is not aware that they are a part of the result set.

• A client can expose hidden keys by setting the CS_HIDDEN_KEYS
property to CS_TRUE.

• Once hidden keys are exposed, they are returned as ordinary
columns. If an application calls ct_res_info to retrieve the number of
columns in a result set, for example, the number will include
exposed columns. An application can bind and fetch the row
values of exposed columns.

• If a column is an exposed hidden key, ct_describe includes
CS_HIDDEN in the status field bit mask describing the column.

2-144 Topics

Properties Open Client Release 10.0

• An application can use ct_keydata with a table’s keys to change a
cursor’s position. For information on how to do this, see the
ct_keydata manual page.

• An application cannot set the CS_HIDDEN_KEYS property at the
command level if results are pending or a cursor is open.

Host Name

• CS_HOSTNAME is the name of the host machine, used when logging
in to a server.

• SQL Server lists a process’ host name in the sysprocesses table of the
master database.

Locale Information

• CS_LOC_PROP defines a CS_LOCALE structure that contains
localization values. Localization values include a language, a
character set, datetime formats, and a collating sequence.

• An application can call ct_con_props to set or retrieve CS_LOC_PROP
at the connection level.

- When setting CS_LOC_PROP, an application passes ct_con_props a
CS_LOCALE structure. ct_con_props copies information from the
CS_LOCALE and stores it internally. After calling ct_con_props, the
application can de-allocate the CS_LOCALE.

- When retrieving CS_LOC_PROP, an application passes ct_con_props
a CS_LOCALE structure. ct_con_props copies current localization
information into this CS_LOCALE.

• A connection picks up default localization information from its
parent context.

• An application can call cs_loc_alloc to allocate a CS_LOCALE
structure.

• An application can call cs_config to set or retrieve CS_LOC_PROP at
the context level.

• If an application does not call cs_config to define localization
information for a context, the context uses default localization
values that are assigned at allocation time. On most platforms,
environment variables determine the default values. For specific
information on how default localization values are assigned on
your platform, see the Open Client/Server Supplement.

Client-Library/C Reference Manual 2-145

Open Client Release 10.0 Properties

Location of the Interfaces File

• CS_IFILE defines the name and location of the interfaces file.

• The interfaces file contains the name and network address of every
server available on the network. It establishes communication
between clients and servers. For every server to which a client
might connect, the interfaces file contains an entry which includes
the server name, the machine name, and the address of that server.
For Client-Library applications, the interfaces file is searched
during every call to ct_connect.

• On most platforms, if a particular interfaces file has not been
specified via ct_config, ct_connect attempts to use a file named
interfaces in the directory named by the SYBASE environment
variable or logical name. If SYBASE has not been set, ct_connect
attempts to use a file named interfaces in the home directory of the
user named “sybase”

• For more information on the interfaces file, see the SYBASE
Installation Guide.

➤ Note
Not all platforms use an interfaces file. If you do not know whether your platform

uses an interfaces file, consult your SYBASE System Administrator or see the

SYBASE SQL Server Installation Guide for your platform.

Login Status

• CS_LOGIN_STATUS is CS_TRUE if a connection is open, CS_FALSE if it
is not. This property can only be retrieved.

• ct_connect is used to open a connection.

Login Timeout

• CS_LOGIN_TIMEOUT defines the length of time, in seconds, that
Client-Library waits for a login response when making a
connection attempt. A Client-Library application makes a
connection attempt by calling ct_connect.

• The default timeout value is 60 seconds. A timeout value of
CS_NO_LIMIT represents an infinite timeout period.

Note that a timeout value of CS_NO_LIMIT does not apply to
asynchronous connections. ct_connect calls on asynchronous
connections return immediately.

2-146 Topics

Properties Open Client Release 10.0

Maximum Number of Connections

• CS_MAX_CONNECT defines the maximum number of
simultaneously open connections that a context can have.
CS_MAX_CONNECT has a default value of 25. Negative and zero
values are not allowed for CS_MAX_CONNECT.

• If ct_config is called to set a value for CS_MAX_CONNECT which is less
than the number of currently open connections, ct_config raises a
Client-Library error and returns CS_FAIL without altering the value
of CS_MAX_CONNECT.

Memory Pool

• CS_MEM_POOL identifies a pool of memory that Client-Library can
use to satisfy its memory requirements.

• Ordinarily, Client-Library routines satisfy their memory
requirements by calling malloc. However, because not all
implementations of malloc are re-entrant, it is not safe for Client-
Library routines that are called at the interrupt level to use malloc.
For this reason, asynchronous applications are required to provide
an alternate way for Client-Library to satisfy its memory
requirements.

Client-Library provides two mechanisms by which an
asynchronous application can satisfy Client-Library’s memory
requirements:

- The application can use the CS_MEM_POOL property to provide
Client-Library with a memory pool.

- The application can use the CS_USER_ALLOC and CS_USER_FREE
properties to install memory allocation routines that Client-
Library can safely call at the interrupt level.

If an asynchronous application fails to provide Client-Library
with a safe way to satisfy memory requirements, Client-
Library’s behavior is undefined.

• ct_config returns CS_FAIL if an application attempts to set a memory
pool that does not meet Client-Library’s minimum pool size
requirements.

• On UNIX systems, a memory pool should include approximately
6K bytes for each connection.

• Client-Library attempts to satisfy memory requirements from the
following sources in the following order:

1. Memory pool.

Client-Library/C Reference Manual 2-147

Open Client Release 10.0 Properties

2. User-supplied allocation and free routines.

3. System routines.

• If a connection cannot get the memory it needs, Client-Library
marks the connection dead.

• An application is responsible for allocating and freeing the
memory identified by CS_MEM_POOL.

• An application can replace a memory pool by calling ct_config with
action as CS_SET and buffer as the address of the new pool.

• An application can clear a memory pool in two ways:

- By calling ct_config with action as CS_SET and buffer as NULL

- By calling ct_config with action as CS_CLEAR

• An application cannot set or clear a memory pool for a context in
which CS_CONNECTION structures currently exist. A context must
drop all CS_CONNECTION structures before clearing a memory
pool.

Network I/O

• CS_NETIO determines whether a connection is synchronous, fully
asynchronous, or deferred asynchronous:

- On a synchronous connection, a routine that requires a server
response blocks until the response is received.

- On a fully asynchronous connection, a routine that requires a
server response returns CS_PENDING immediately. When the
response arrives and the routine completes its work, Client-
Library calls the connection’s completion callback automatically,
at the interrupt level.

- On a deferred asynchronous connection, a routine that requires a
server response returns CS_PENDING immediately. The
connection must call ct_poll in order to find out if the routine has
completed.

• An application can set up deferred asynchronous connections only
at the context level, by calling ct_config with *buffer as CS_DEFER_IO.
CS_DEFER_IO is not a legal value at the connection level.

2-148 Topics

Properties Open Client Release 10.0

• Asynchronous connections use the type of asynchronous I/O that
matches their parent context. For example, suppose an application
sets up deferred asynchronous connections at the context level and
then creates a synchronous connection within the context. If the
application later calls ct_con_props with *buffer as CS_ASYNC_IO to
make this connection asynchronous, the connection will be
deferred asynchronous, not fully asynchronous.

• A context can include both synchronous and asynchronous
connections, but all asynchronous connections within a context
must be either fully asynchronous or deferred asynchronous.

• The following restrictions apply to an application’s use of
CS_NETIO:

- An application cannot set CS_NETIO for a context if the context
has open connections.

- An application cannot set CS_NETIO for a connection if the
connection has any active commands or pending results.

• For more information on asynchronous Client-Library
programming, see the Asynchronous Programming topics page.

No Truncate

• CS_NO_TRUNCATE determines whether Client-Library truncates or
sequences Client-Library and server messages that are longer than
CS_MAX_MSG - 1 bytes.

• Client-Library’s default behavior is to truncate messages that are
longer than CS_MAX_MSG - 1 bytes. When Client-Library is
sequencing messages, however, it uses as many CS_CLIENTMSG or
CS_SERVERMSG structures as necessary to return the full text of a
message. The message’s first CS_MAX_MSG bytes are returned in
one structure, its second CS_MAX_MSG bytes in a second structure,
and so forth.

• Client-Library null terminates only the last chunk of a message. If
a message is exactly CS_MAX_MSG bytes long, the message is
returned in two chunks: the first containing CS_MAX_MSG bytes of
the message and the second containing a null terminator.

• For more information on sequenced messages, see ‘‘Sequencing
Long Messages’’ on page 2-77.

Client-Library/C Reference Manual 2-149

Open Client Release 10.0 Properties

No Interrupt

• CS_NOINTERRUPT determines whether an application can be
interrupted by Client-Library.

• Examples of interrupt situations include:

- A Client-Library routine running on an asynchronous
connection completes, generating an interrupt.

- A registered procedure notification arrives for an application,
generating an interrupt.

• When CS_NOINTERRUPT is CS_TRUE, interruptions are deferred
until CS_NOINTERRUPT is reset to CS_FALSE.

• An application can use the CS_NOINTERRUPT property to protect
critical sections of code.

Notification Parameters

• The CS_NOTIF_CMD property defines a pointer to a CS_COMMAND
structure containing registered procedure notification parameters.

• For more information on registered procedures, see the Registered
Procedures topics page.

Packet Size

• CS_PACKETSIZE determines the packet size that Client-Library uses
when sending Tabular Data Stream (TDS) packets.

• If an application needs to send or receive large amounts of text,
image, or bulk data, a larger packet size can improve efficiency.

Parent Structure

• CS_PARENT_HANDLE defines a pointer to a command or connection
structure’s parent structure.

• If retrieved at the command structure level, CS_PARENT_HANDLE is
a pointer to the command structure’s parent connection structure.

• If retrieved at the connection structure level, CS_PARENT_HANDLE
is a pointer to the connection structure’s parent context structure.

Password

• CS_PASSWORD defines the password that a connection uses when
logging in to a server.

2-150 Topics

Properties Open Client Release 10.0

Security Application-Defined

• CS_SEC_APPDEFINED determines whether or not a connection will
use Open Server application-defined challenge/response security
handshaking.

• If a connection is using challenge/response security handshaking,
then Client-Library calls the connection’s negotiation callback
routine when it receives a server challenge.

• For more information on server challenges, see
‘‘Challenge/Response Security Handshakes’’ on page 2-176.

Security Challenge

• CS_SEC_CHALLENGE determines whether or not a connection will
use Sybase-defined challenge/response security handshaking.

• If a connection is using challenge/response security handshaking,
then Client-Library calls the connection’s negotiation callback
routine when it receives a server challenge.

• For more information on server challenges, see
‘‘Challenge/Response Security Handshakes’’ on page 2-176.

Security Encryption

• CS_SEC_ENCRYPTION determines whether or not a connection will
use encrypted password security handshaking.

• If a connection is using encrypted password security handshaking,
then Client-Library calls the connection’s encryption callback
routine when it receives a request for an encrypted password.

• Typical applications do not need to set CS_SEC_ENCRYPTION, which
is provided for gateway support.

• For more information on encrypted passwords, see ‘‘Encrypted
Password Security Handshakes’’ on page 2-177.

Security Negotiation

• CS_SEC_NEGOTIATE determines whether or not a connection will
use trusted-user security handshaking.

• Trusted-user security handshaking requires a client application to
provide identifying security labels to pass to the server during the
connection process.

• There are two ways for an application to define security labels. An
application can use either, or both, of these methods:

Client-Library/C Reference Manual 2-151

Open Client Release 10.0 Properties

- The application can call ct_labels one time for each label it wants to
define.

- The application can call ct_callback to install a user-supplied
negotiation callback to generate security labels. At connection
time, Client-Library automatically triggers the callback in
response to a request for security labels.

• For more information on login security labels, see ‘‘Trusted-User
Security Handshakes’’ on page 2-175.

TDS Version

• CS_TDS_VERSION defines the version of the Tabular Data Stream
(TDS) protocol that the connection is using.

• Because CS_TDS_VERSION is a negotiated login property, its value
can change during the login process. An application can set
CS_TDS_VERSION to request a TDS level before calling ct_connect.
When ct_connect creates the connection, if the server cannot provide
the requested TDS version, a new (lower) TDS version is
negotiated. An application can retrieve the value of
CS_TDS_VERSION after a connection is established to determine the
actual version of TDS in use.

• The following table lists the symbolic values that CS_TDS_VERSION
can have:

• If not otherwise set, CS_TDS_VERSION defaults to a value based on
the CS_VERSION level that an application requested via ct_init.

Symbolic Value: To Indicate: Features Supported:

CS_TDS_40 4.0 TDS Browse mode, text and image
handling, remote procedure
calls, bulk copy.

CS_TDS_42 4.2 TDS Internationalization.

CS_TDS_46 4.6 TDS Registered procedures, TDS
passthrough, negotiable TDS
packet size, multi-byte character
sets.

CS_TDS_50 5.0 TDS Cursors.

Table 2-31: Values for CS_TDS_VERSION

2-152 Topics

Properties Open Client Release 10.0

• A connection’s CS_TDS_VERSION level will never be higher than the
default TDS level associated with its parent context’s CS_VERSION
level.

For example, 5.0 is the default TDS level associated with a
version level of CS_VERSION_100. If an application calls ct_init with
version as CS_VERSION_100 for a context, all connections created
within that context are restricted to CS_TDS_VERSION levels of 5.0
or lower.

• If an application sets the CS_TDS_VERSION property, Client-Library
overwrites existing capability values with default capability values
corresponding to the new TDS version. For this reason, an
application should set CS_TDS_VERSION before setting any
capabilities for a connection.

Text and Image Limit

• CS_TEXTLIMIT indicates the length, in bytes, of the longest text or
image value that an application wants to receive. Client-Library
will read but ignore any part of a text or image value that goes over
this limit.

• The default value of CS_TEXTLIMIT is CS_NO_LIMIT. This means that
Client-Library reads and returns all data sent by the server.

• In case of huge text values, it can take some time for an entire text
value to be returned over the network. To keep a SQL Server from
sending this extra text in the first place, use the ct_options
CS_TEXTSIZE_OPT option to set the server global variable @@textsize.

Timeout

• CS_TIMEOUT controls the length of time, in seconds, that Client-
Library waits for a server response when making a request.

• The default timeout value is CS_NO_LIMIT, which represents an
infinite timeout period. Negative and zero values are not allowed
for CS_TIMEOUT.

• ct_config can be called to set the timeout value at any time during an
application — before or after a call to ct_connect creates an open
connection. It takes effect for all open connections immediately
upon being called.

Transaction Name

• CS_TRANSACTION_NAME defines a transaction name.

Client-Library/C Reference Manual 2-153

Open Client Release 10.0 Properties

• SYBASE Open Server for CICS uses transaction names to identify
executables running under CICS. For more information on
SYBASE Open Server for CICS, see the Open Server for CICS
documentation.

• All Client-Library applications can set CS_TRANSACTION_NAME. If
a transaction name is not required, CS_TRANSACTION_NAME is
ignored.

User Allocation Function

• CS_USER_ALLOC identifies a user-supplied memory allocation
routine that Client-Library will use for memory management.

• Together, CS_USER_ALLOC and CS_USER_FREE allow an
asynchronous application to perform its own memory
management.

• A user-supplied memory allocation routine must be defined as:

void *user_alloc(size)
size_t size;

• Ordinarily, Client-Library routines satisfy their memory
requirements by calling malloc. However, because not all
implementations of malloc are re-entrant, it is not safe for Client-
Library routines that are called at the interrupt level to use malloc.
For this reason, asynchronous applications are required to provide
an alternate way for Client-Library to satisfy its memory
requirements.

Client-Library provides two mechanisms by which an
asynchronous application can satisfy Client-Library’s memory
requirements:

- The application can use the CS_MEM_POOL property to provide
Client-Library with a memory pool.

- The application can use the CS_USER_ALLOC and CS_USER_FREE
properties to install memory allocation and free routines that
Client-Library can safely call at the interrupt level.

If an asynchronous application fails to provide Client-Library
with a safe way to satisfy memory requirements, Client-
Library’s behavior is undefined.

• Client-Library attempts to satisfy memory requirements from the
following sources in the following order:

1. Memory pool.

2. User-supplied allocation and free routines.

2-154 Topics

Properties Open Client Release 10.0

3. System routines.

• If a connection cannot get the memory it needs, Client-Library
marks the connection dead.

• An application can replace a user-defined memory routine by
calling ct_config with action as CS_SET and buffer as the address of the
new routine.

• An application can clear a memory routine in two ways:

- By calling ct_config with action as CS_SET and buffer as NULL.

- By calling ct_config with action as CS_CLEAR.

User Free Function

• CS_USER_FREE identifies a user-supplied memory free routine that
Client-Library will use for interrupt-level memory management.

• Together, CS_USER_ALLOC and CS_USER_FREE allow an
asynchronous application to perform its own interrupt-level
memory management.

• A user-supplied memory free routine must be defined as:

void user_free(ptr)
void *ptr;

• For more information, see ‘‘User Allocation Function’’ on page 2-
153.

User Data

• The CS_USERDATA property defines user-allocated data. This
property allows an application to associate user data with a
particular connection or command structure.

• CS_USERDATA is useful when a callback routine and the main-line
application need to share information without using global
variables.

• When an application uses CS_USERDATA to store data, Client-
Library copies the actual data, not a pointer to the data, into
internal data space.

• To associate user data with a context structure, an application can
call cs_config.

• The following code fragment demonstrates the CS_USERDATA
property:

Client-Library/C Reference Manual 2-155

Open Client Release 10.0 Properties

CS_CHAR set_charbuf[32];
CS_CHAR get_charbuf[32];
CS_CONNECTION *con;
CS_RETCODE ret;
CS_INT outlen;
CS_COMMAND *set_cmd;
CS_COMMAND *get_cmd;

/*
** Store a character string in the userdata field.
** Set the length field to one greater than the length
** of the string so that the null terminator will be
** stored as part of the user data. If the null
** terminator is not explicitly stored as part of the
** userdata then the string will not be null-
** terminated when it is retrieved.
*/
strcpy(set_charbuf, "some userdata");
ret = ct_con_props(con, CS_SET, CS_USERDATA,

set_charbuf, strlen(set_charbuf) + 1, NULL);
if (ret != CS_SUCCEED)
{

error("ct_con_props() failed");
}

ret = ct_con_props(con, CS_GET, CS_USERDATA,
get_charbuf, sizeof(get_charbuf), &outlen);

if (ret != CS_SUCCEED)
{

error("ct_con_props() failed");
}

/*
** The next example stores a pointer to a CS_COMMAND
** structure in the connection’s user data field.
*/
ret = ct_con_props(con, CS_SET, CS_USERDATA,

&set_cmd, sizeof(set_cmd), NULL);
if (ret != CS_SUCCEED)
{

error("ct_con_props() failed");
}

ret = ct_con_props(con, CS_GET, CS_USERDATA,
&get_cmd, sizeof(get_cmd), &outlen);

if (ret != CS_SUCCEED)
{

error("ct_con_props() failed");
}

2-156 Topics

Properties Open Client Release 10.0

User Name

• CS_USERNAME defines the user login name that the connection will
use to log into a server.

Version String for Client-Library

• CS_VER_STRING defines a character string that represents the true
version of Client-Library that an application is using. This property
can only be retrieved.

• CS_VER_STRING and CS_VERSION can indicate different version
levels because higher-level versions of Client-Library can emulate
the behavior of lower-level versions.

CS_VER_STRING represents the actual version of Client-Library
that is in use. CS_VERSION represents the version of Client-
Library behavior than an application has requested.

Version of Client-Library

• The CS_VERSION property represents the version of Client-Library
behavior than an application has requested via ct_init. The value of
this property can only be retrieved.

• Currently, the only value that is legal for CS_VERSION is
CS_VERSION_100.

• Connections allocated within a context use default
CS_TDS_VERSION values that are based on their parent context’s
CS_VERSION level.

• Both Client-Library and CS-Library have CS_VERSION properties.
ct_config returns the value of the Client-Library CS_VERSION.
cs_config returns the value of the CS-Library CS_VERSION.

Client-Library/C Reference Manual 2-157

Open Client Release 10.0 Registered Procedures

Registered Procedures

A registered procedure is a procedure that is defined and installed in a
running Open Server application. Release 2.0 is the first Open Server
release to support registered procedures. At this time, registered
procedures are not supported by SQL Server.

For Client-Library applications, registered procedures provide a
means for inter-application communication and synchronization. This
is because Client-Library applications connected to an Open Server
can “watch” for a registered procedure to execute. When the registered
procedure executes, applications watching for it receive a notification
that includes the procedure’s name and the arguments it was called
with.

For example, suppose that:

• stockprice is a real-time Client-Library application monitoring stock
prices.

• price_change is a registered procedure created in Open Server by
stockprice, and that price_change takes as parameters a stock name
and a price differential.

• sellstock, an application which puts stock up for sale, has requested
to be notified when price_change executes.

When stockprice, the monitoring application, becomes aware that the
price of Extravagant Auto Parts stock has risen $1.10, it executes
price_change with the parameters “Extravagant Auto Parts” and
“+1.10”.

When price_change executes, Open Server sends sellstock a notification
containing the name of the procedure (price_change) and the
arguments passed to it (“Extravagant Auto Parts” and “+1.10”).
sellstock uses the information contained in the notification to decide
whether or not to sell Extravagant Auto Parts stock.

price_change is the means through which the stockprice and sellstock
applications communicate.

Registered procedures as a means of communication have the
following advantages:

• A single call to execute a registered procedure can result in many
client applications being notified that the procedure has executed.
The application executing the procedure does not need to know
how many, or which, clients have requested information.

2-158 Topics

Registered Procedures Open Client Release 10.0

• The registered procedure communication mechanism is server-
based. Open Server acts as a central repository for connection
addresses. Because of this, client applications can communicate
without having to connect directly to each other. Instead, each
client simply connects to the Open Server.

A Client-Library application makes remote procedure calls to Open
Server system registered procedures in order to:

• Create a registered procedure in Open Server.

(Note that a Client--Library application can only create regis-
tered procedures that contain no executable statements. These
“bodiless” procedures are primarily useful for communication
and synchronization purposes.)

• Drop a registered procedure.

• List all registered procedures defined in Open Server.

• Request to be notified when a particular registered procedure is
executed.

• List all registered procedure notifications.

• Execute a registered procedure.

For more information on Open Server system registered procedures,
see the Open Server Server-Library Reference Manual.

An application calls Client-Library routines in order to:

• Install a user-supplied callback routine to be called when the
application receives notification that a registered procedure has
executed

• Poll the network (if necessary) to see if any registered procedure
notifications are waiting

When Client-Library Receives a Notification

When Client-Library receives a registered procedure notification, it
calls an application’s notification callback routine.

The registered procedure’s name is available as the second parameter
to the notification callback routine.

The arguments with which the registered procedure was called are
available inside the notification callback, as a parameter result set. To
retrieve these arguments, an application:

Client-Library/C Reference Manual 2-159

Open Client Release 10.0 Registered Procedures

• Calls ct_con_props(CS_NOTIF_CMD) to retrieve a pointer to the
command structure containing the parameter result set

• Calls ct_res_info(CS_NUMDATA), ct_describe, ct_bind, ct_fetch, and
ct_get_data to describe, bind, and fetch the parameters

For more information on callback routines, see the Callbacks topics
page.

Receiving Notifications Asynchronously

The CS_ASYNC_NOTIFS property determines whether a connection
receives notifications asynchronously:

- An otherwise synchronous connection can receive asynchronous
notifications by setting CS_ASYNC_NOTIFS to CS_TRUE.

- An asynchronous connection will not receive notifications
asynchronously unless it sets CS_ASYNC_NOTIFS to CS_TRUE.

CS_ASYNC_NOTIFS defaults to CS_FALSE, which means that the
application must be reading from the network in order to receive a
registered procedure notification.

2-160 Topics

Remote Procedure Calls Open Client Release 10.0

Remote Procedure Calls

A Client-Library application can call a SQL Server stored procedure in
two ways: by executing a Transact-SQL language command (“execute
myproc”) or by executing an RPC (remote procedure call) command.

A Client-Library application can call an Open Server registered
procedure by executing an RPC command.

Comparing RPCs and Execute Statements

Remote procedure calls have a few advantages over execute statements:

• An RPC command can be used to execute a SQL Server stored
procedure or an Open Server registered procedure.

A Transact-SQL language command can be used only to execute
a SQL Server stored procedure (unless the Open Server appli-
cation understands Transact-SQL).

• An RPC command passes the stored procedure’s parameters in
their native datatypes, in contrast to the execute statement, which
passes parameters as ASCII characters. This difference means that
the RPC method is faster and more efficient than the execute
method, because it does not require either the application program
or the server to convert between native datatypes and their ASCII
equivalents.

• It is simpler and faster to accommodate stored procedure return
parameters if the procedure is invoked with an RPC command
instead of a language command.

With an RPC command, the return parameter values automati-
cally become available to the application as a parameter result
set. (Note, however, that a return parameter must be specified as
such when it is originally added to the RPC command stream
with ct_param.)

With an execute statement, on the other hand, the return
parameter values are available only if the language command
declares local variables and passes these variables (not
constants) for the return parameters. Because the language
command contains more than one SQL statement, this technique
involves additional parsing each time the language command is
executed. Further, the language command must explicitly select
the local variables after the RPC is executed. Their values are
then returned to the application as a regular row result set.

Client-Library/C Reference Manual 2-161

Open Client Release 10.0 Remote Procedure Calls

Servers Can Execute Remote Procedures

A server can execute a procedure residing on another server. For
example, this might occur when a stored procedure being executed on
one server contains an execute statement for a stored procedure on
another server. The execute command causes the first server to log into
the second server and execute the remote procedure. This is called a
“server-to-server remote procedure call,” and happens without any
intervention from the application, although the application can specify
the remote password which the first server uses to log in to the second.

A server-to-server remote procedure call also occurs when an
application sends a request to execute a procedure that does not reside
on the server to which it is directly connected. For example, if an
application is connected to server1, the following language command
results in a server-to-server remote procedure call:

ct_command(cmd, CS_LANG_CMD,
“execute server2...procedure1”,
CS_NULLTERM, CS_UNUSED);

Transact-SQL commands contained in a stored procedure that is
executed as the result of a server-to-server remote procedure call
cannot be rolled back.

Remote Procedure Call Routines

The following Client-Library routines are related to remote procedure
calls:

• ct_remote_pwd sets and clears the passwords that are used when
logging into a remote server.

• ct_command initiates an RPC command.

• ct_param defines parameters for an RPC command.

• ct_send sends an RPC command.

• ct_results, ct_bind, and ct_fetch are used to process remote procedure
results.

Remote Procedure Call Results

In addition to results generated by the Transact-SQL statements they
contain, SQL Server stored procedures that are executed via an RPC
command can generate return parameter and return status results.

2-162 Topics

Remote Procedure Calls Open Client Release 10.0

Open Server procedures can generate row, cursor, return parameter
and return status results.

All of these types of results can be processed using ct_results, ct_bind,
and ct_fetch.

Return Parameters

SQL Server and Open Server procedures can return values for
specified “return parameters.” Changes made to the value of a return
parameter inside the stored procedure are then available to the
program that called the procedure. This is analogous to the “pass by
reference” facility available in some programming languages.

In order for a parameter to function as a return parameter, it must be
declared as such within the stored procedure. The execute statement or
RPC command that invokes the stored procedure must also indicate
that the parameter is a return parameter. In the case of an RPC
command, it is the ct_param routine that specifies whether a parameter
is a return parameter.

Processing Return Parameters

As mentioned in the preceding section, “Comparing RPCs and
Execute Statements,” return parameter values are available to an
application as a parameter result set only if the application invoked
the stored procedure using an RPC command.

ct_results sets its *result_type parameter to CS_PARAM_RESULT if a
parameter result set is available to be processed.

An application processes a CS_PARAM_RESULT result set in the same
way as it would processes a regular row result set; that is, by binding
result items and fetching rows of data. Because stored procedure
parameters are returned to an application as a single row, one call to
ct_fetch will copy all of a procedure’s return parameters into the
program variables designated via ct_bind. However, an application
must still call ct_fetch in a loop until it returns CS_END_DATA.

Return Status

Stored procedures can return a status number.

Client-Library/C Reference Manual 2-163

Open Client Release 10.0 Remote Procedure Calls

All stored procedures that run on a SQL Server version 4.0 or greater
return a status number. Stored procedures usually return 0 to indicate
normal completion. For a list of SQL Server default return status
numbers, see return in the SQL Server Reference Manual.

Because return status numbers are a feature of stored procedures, only
an RPC command or a language command containing an execute
statement can generate a return status.

Processing an RPC Command Return Status

ct_results sets its *result_type parameter to CS_STATUS_RESULT if a return
status result set is available to be processed.

Because a return status result set contains only a single value, one call
to ct_fetch will copy the status into the program variable designated via
ct_bind. However, an application should always call ct_fetch in a loop
until it returns CS_END_DATA.

2-164 Topics

Results Open Client Release 10.0

Results

When a Client-Library command executes on a server, it can generate
various types of results which are returned to the application that sent
the command:

They are:

- Regular row results

- Cursor row results

- Parameter results

- Stored procedure return status results

- Compute row results

- Message results

- Describe results

- Format results

Results are returned to an application in the form of “result sets.” A
result set contains only a single type of result data. Regular row and
cursor row result sets can contain multiple rows of data, but other
types of result sets contain at most a single row of data.

An application processes results by calling ct_results, which indicates
the type of result available by setting *result_type.

ct_results sets *result_type to CS_CMD_DONE to indicate that the results of
a “logical command” have been completely processed. A logical
command is generally considered to be any Open Client command
defined via ct_command, ct_dynamic, or ct_cursor. Exceptions to this rule
are documented in ‘‘When are the Results of a Command Completely
Processed?’’ on page 3-205.

Some commands, for example a language command containing a
Transact-SQL update statement, do not generate results. ct_results sets
*result_type to CS_CMD_SUCCEED or CS_CMD_FAIL to indicate the status
of a command that does not return results.

Types of Results

Regular Row Results

A regular row result set is generated by the execution of a Transact-
SQL select statement on a server.

Client-Library/C Reference Manual 2-165

Open Client Release 10.0 Results

A regular row result set contains zero or more rows of tabular data.

Cursor Row Results

A cursor row result set is generated when an application executes a
Client-Library cursor open command.

➤ Note
A cursor row result set is not generated when an application executes language

command containing a Transact-SQL open statement. For more information,

see ‘‘Language Cursors’’ on page 2-59.

A cursor row result set contains zero or more rows of tabular data.

A cursor row result set differs from a regular row result set in that an
application can use ct_cursor to update underlying tables while fetching
cursor rows. This is not possible with regular rows.

Parameter Results

A parameter result set contains a single “row” of parameters. Several
types of data can be returned as a parameter result set, including:

• Message parameters. For more information, see the Message
Commands and Results topics page, 2-114.

• Stored procedure return parameters. For more information, see the
Remote Procedure Calls topics page, 2-160.

Extended error data and registered procedure notification parameters
are also returned as parameter result sets, but since an application
does not call ct_results to process these types of data, the application
never sees a result type of CS_PARAM_RESULT. Instead, the row of
parameters is simply available to be fetched after the application
retrieves the CS_COMMAND structure containing the data.

For information on extended error data, see the Error and Message Handling
topics page, 2-74. For information on registered procedure notification
parameters, see the Registered Procedures topics page, 2-157.

Stored Procedure Return Status Results

A status result set consists of a single row which contains a single
value, a return status. For more information on a stored procedure
return status, see the Remote Procedure Calls topics page.

2-166 Topics

Results Open Client Release 10.0

Compute Row Results

A compute row result set contains a single row of tabular data with a
number of columns equal to the number of columns listed in the
compute clause that generated the compute row.

For more information on compute rows, see compute clause in the SQL
Server Reference Manual.

Message Results

A message result set does not actually contain any data. Instead, a
message has an “id.” To get a message’s id, an application can call
ct_res_info after ct_results returns CS_MSG_RESULT.

If parameters are associated with a message, they are returned as a
separate parameter result set, immediately following the message
result set.

For more information on message results, see the Message Commands and
Results topics page, 2-114.

Describe Results

A describe result set does not contain fetchable data, but rather
indicates the existence of descriptive information returned as the
result of a dynamic SQL describe input or describe output command.

An application can retrieve this descriptive information by calling
ct_describe or ct_dyndesc.

For more information on dynamic SQL, see the Dynamic SQL topics
page, 2-63.

Format Results

There are two types of format results: regular row format results and
compute row format results.

Format result sets do not contain fetchable data, but rather indicate the
availability of format information for the regular row and compute
row result sets with which they are associated.

All format information for a command is returned before any data.
That is, the row format and compute format result sets for a command
precede the regular row and compute row result sets that the
command generates.

Client-Library/C Reference Manual 2-167

Open Client Release 10.0 Results

Format information is primarily of use in gateway applications, which
need to repackage SQL Server results before sending them on to a
foreign client.

A gateway application typically processes a format result set one
column at a time, retrieving format information for the column by
calling ct_describe and ct_compute_info and sending the format
information on via Server-Library routines.

A connection receives format results only if its CS_EXPOSE_FMTS
property is set to CS_TRUE.

Program Structure for Processing Results

The following pseudo-code fragment demonstrates how a typical
application might process the various types of result data:

while ct_results returns CS_SUCCEED
case CS_ROW_RESULT

ct_res_info to get the number of columns
for each column:

ct_describe to get a description of the
column

ct_bind to bind the column to a program
variable

end for
while ct_fetch returns CS_SUCCEED or

CS_ROW_FAIL
if CS_SUCCEED

process the row
else if CS_ROW_FAIL

handle the row failure;
end if

end while
switch on ct_fetch’s final return code

case CS_END_DATA...
case CS_CANCELED...
case CS_FAIL...

end switch
end case
case CS_CURSOR_RESULT

ct_res_info to get the number of columns
for each column:

ct_describe to get a description of the
column

ct_bind to bind the column to a program
variable

end for

2-168 Topics

Results Open Client Release 10.0

while ct_fetch returns CS_SUCCEED or
CS_ROW_FAIL
if CS_SUCCEED

process the row
else if CS_ROW_FAIL

handle the row failure
end if
/* For update or delete only: */
if target row is not the row just fetched

ct_keydata to specify the target row
key

end if
/* End for update or delete only */

/* To send another cursor command: */
ct_cursor to initiate the cursor command
ct_param if command is update of some

columns only
ct_send to send the command
while ct_results returns CS_SUCCEED

(...process results...)
end while
/* End to send another cursor command */

end while
switch on ct_fetch’s final return code

case CS_END_DATA...
case CS_CANCELED...
case CS_FAIL...

end switch
end case
case CS_PARAM_RESULT

ct_res_info to get the number of parameters
for each parameter:

ct_describe to get a description of the
parameter

ct_bind to bind the parameter to a
variable

end for
while ct_fetch returns CS_SUCCEED or

CS_ROW_FAIL
if CS_SUCCEED

process the row of parameters
else if CS_ROW_FAIL

handle the failure
end if

end while
switch on ct_fetch’s final return code

case CS_END_DATA...

Client-Library/C Reference Manual 2-169

Open Client Release 10.0 Results

case CS_CANCELED...
case CS_FAIL...

end switch
end case
case CS_STATUS_RESULT

ct_bind to bind the status to a program
variable

while ct_fetch returns CS_SUCCEED or
CS_ROW_FAIL
if CS_SUCCEED

process the return status
else if CS_ROW_FAIL

handle the failure
end if

end while
switch on ct_fetch’s final return code

case CS_END_DATA...
case CS_CANCELED...
case CS_FAIL...

end switch
end case
case CS_COMPUTE_RESULT

(optional: ct_compute_info to get bylist
length, bylist, or compute row id)

ct_res_info to get the number of columns
for each column:

ct_describe to get a description of the
column

ct_bind to bind the column to a program
variable

(optional: ct_compute_info to get the
compute column id or the aggregate
operator for the compute column)

end for
while ct_fetch returns CS_SUCCEED or

CS_ROW_FAIL
if CS_SUCCEED

process the compute row
else if CS_ROW_FAIL

handle the failure
end if

end while
switch on ct_fetch’s final return code

case CS_END_DATA...
case CS_CANCELED...
case CS_FAIL...

end switch
end case

2-170 Topics

Results Open Client Release 10.0

case CS_MSG_RESULT
ct_res_info to get the message id
code to handle the message

end case
case CS_DESCRIBE_RESULT

ct_res_info to get the number of columns
for each column:

ct_describe or ct_dyndesc to get a
description

end for
end case
case CS_ROWFMT_RESULT

ct_res_info to get the number of columns
for each column:

ct_describe to get a column description
send the information on to the gateway

client
end for

end case
case CS_COMPUTEFMT_RESULT

ct_res_info to get the number of columns
for each column:

ct_describe to get a column description
(if required:

ct_compute_info for compute
information

end if required)
send the information on to the gateway

client
end for

end case
case CS_CMD_DONE

indicates a command’s results are completely
processed

end case
case CS_CMD_SUCCEED

indicates the success of a command that
returns no results

end case
case CS_CMD_FAIL

indicates a command failed
end case

end while
switch on ct_results’ final return code

Client-Library/C Reference Manual 2-171

Open Client Release 10.0 Results

case CS_END_RESULTS
indicates no more results

end case
case CS_CANCELED

indicates results were canceled
end case
case CS_FAIL

indicates ct_results failed
end case

end switch

Retrieving an Item’s Value

When processing a result set, there are three ways for an application to
retrieve a result item’s value:

• It can call ct_bind to associate a result item with a program variable.
When the program calls ct_fetch to fetch a result row, the item’s
value is automatically copied into the associated program variable.
Most applications will use this method for all result items except
large text or image values.

• It can call ct_get_data to retrieve a result item’s value in chunks. After
calling ct_fetch to fetch the row, the application calls ct_get_data in a
loop. Each ct_get_data call retrieves a chunk of the result item’s
value. Most application will use ct_get_data only to retrieve large
text or image values.

• It can call ct_dyndesc to retrieve result item descriptions and values.
An application calls ct_dyndesc once for each result item, after
calling ct_fetch to fetch the row. Typical applications will not use
ct_dyndesc, which is intended for precompiler support.

2-172 Topics

Sample Programs Open Client Release 10.0

Sample Programs

The following sample programs and header files are installed with
Client-Library. Each file contains a header describing the file’s contents
and purpose.

Before running a sample program:

• Set the $SYBASE environment variable, or the SYBASE logical for
the VMS platform, to indicate the sybase directory

• Set the $SYBPLATFORM environment variable to indicate the
platform on which the example will run (for example, sun4,
sun_svr4, hp800, rs6000, ncr, axposf)

• Set the DSQUERY environment variable to indicate the server to
which the program will connect.

Sample
Program Description

blktxt.c Uses the bulk copy routines to copy static data to a table.

compute.c Shows how to process compute results.

csr_disp.c Demonstrates the use of a read-only cursor.

ex_alib.c
ex_amain.c

A collection of routines which form an example of how to
write an asynchronous layer on top of Client-Library.

example.h A header file for the Client-Library example programs.

exasync.h A header file for the constants and data structures in ex_alib.c
and ex_amain.c.

exutils.c Contains utility routines used by all of the other sample
programs, and demonstrates how an application can hide
some of the implementation details of Client-Library from
higher-level programs.

exutils.h A header file for the utility functions in exutils.c.

getsend.c Shows how to retrieve and update text data.

i18n.c Demonstrates some of the international features available in
Client-Library.

rpc.c Illustrates sending an RPC command to a server and then
processing the row, parameter, and status results returned
from the remote procedure.

Table 2-32: Client-Library sample programs and associated header files

Client-Library/C Reference Manual 2-173

Open Client Release 10.0 Sample Programs

• Assign valid username and password values in the example.h
header file for all but the asynchronous example programs.

• Install the pubs2 database on the server, for those sample programs
which require access to pubs2 objects.

Refer to the appropriate sample program’s header to find out
which database and table(s) the program will be accessing.

Client-Library Routines in Sample Programs

The table below lists Client-Library and CS-Library routines along
with sample programs that demonstrate their use:

Routine Sample Program(s)

blk_alloc blktxt.c

blk_bind blktxt.c

blk_done blktxt.c

blk_drop blktxt.c

blk_init blktxt.c

blk_rowxfer blktxt.c

blk_textxfer blktxt.c

cs_config i18n.c

cs_convert exutils.c, i18n.c, rpc.c

cs_ctx_alloc ex_amain.c, exutils.c

cs_ctx_drop ex_amain.c, exutils.c

cs_loc_alloc i18n.c

cs_loc_drop i18n.c

cs_locale i18n.c

cs_set_convert i18n.c

cs_setnull i18n.c, rpc.c

cs_will_convert exutils.c

ct_bind compute.c, ex_alib.c, exutils.c, getsend.c, i18n.c

ct_callback ex_alib.c, ex_amain.c, exutils.c

Table 2-33: Client-Library routines in sample programs

2-174 Topics

Sample Programs Open Client Release 10.0

ct_cancel ex_alib.c, ex_amain.c, exutils.c, getsend.c

ct_close ex_amain.c, exutils.c

ct_cmd_alloc compute.c, csr_disp.c, ex_alib.c, exutils.c, getsend.c, i18n.c,
rpc.c

ct_cmd_drop compute.c, csr_disp.c, ex_alib.c, exutils.c, i18n.c

ct_cmd_props ex_alib.c, rpc.c

ct_command compute.c, ex_alib.c, exutils.c, getsend.c, i18n.c, rpc.c

ct_compute_info compute.c

ct_con_alloc blktxt.c, ex_amain.c, exutils.c

ct_con_drop blktxt.c, ex_amain.c, exutils.c

ct_con_props blktxt.c, ex_alib.c, ex_amain.c, exutils.c, rpc.c

ct_config exutils.c

ct_connect blktxt.c, ex_amain.c, exutils.c

ct_cursor csr_disp.c

ct_debug ex_alib.c, ex_amain.c, exutils.c

ct_describe compute.c, ex_alib.c, exutils.c, getsend.c, i18n.c

ct_exit ex_amain.c, exutils.c

ct_fetch compute.c, ex_alib.c, exutils.c, getsend.c, i18n.c

ct_get_data getsend.c

ct_init ex_amain.c, exutils.c

ct_param rpc.c

ct_poll ex_amain.c

ct_res_info compute.c, ex_alib.c, exutils.c, i18n.c, rpc.c

ct_results compute.c, csr_disp.c, ex_alib.c, exutils.c, getsend.c, i18n.c,
rpc.c

ct_send compute.c, csr_disp.c, ex_alib.c, exutils.c, getsend.c, i18n.c,
rpc.c

ct_send_data getsend.c

ct_wakeup ex_alib.c

Routine Sample Program(s)

Table 2-33: Client-Library routines in sample programs

Client-Library/C Reference Manual 2-175

Open Client Release 10.0 Security Features

Security Features

Client-Library’s security-related features include:

• Support for various types of security handshakes

• Support for Secure SQL Server’s sensitivity and sensitivity_boundary
datatypes.

• Support for bulk copies in to and out from Secure SQL Servers.

Security Handshakes

Client-Library supports three types of security handshakes:

• Trusted-user security handshakes

In this type of handshake, the server asks the client for identi-
fying security labels, which the client then provides.

Secure SQL Server uses trusted-user security handshaking. On
Secure SQL Server, security labels are known as “sensitivity
labels.”

• Challenge/response security handshakes

In this type of handshake, the server issues a challenge to which
the client must correctly respond.

• Encrypted password security handshakes

In this type of handshake, the server provides the client with a
key. The client uses the key to encrypt a password, which it then
returns to the server.

Trusted-User Security Handshakes

To provide the response that a trusted-user security handshake
requires, an application must:

• Call ct_con_props to set the CS_SEC_NEGOTIATE property to CS_TRUE.

• Define security labels to pass to the server at connection time.

There are two ways for an application to define security labels.
An application can use either, or both, of these methods:

- The application can call ct_labels one time for each label it wants to
define.

2-176 Topics

Security Features Open Client Release 10.0

- The application can call ct_callback to install a user-supplied
negotiation callback to generate security labels. At connection
time, Client-Library automatically triggers the callback in
response to a request for security labels.

If an application uses both methods, the labels defined via
ct_labels and the labels generated by the negotiation callback are
sent to the server at the same time.

When the application calls ct_connect to connect to the server, the server
responds with a request for security labels. In response, Client-Library
generates a list of labels and sends it to the server:

• If the application has called ct_labels to define labels, Client-Library
includes these labels in the list.

• If the application has installed a negotiation callback to generate
security labels, Client-Library triggers the callback and includes
the labels that it generates in the list.

When it is called, the negotiation callback generates a single
security label and returns either CS_CONTINUE, CS_SUCCEED, or
CS_FAIL.

If the callback returns CS_CONTINUE, Client-Library calls the
negotiation callback again, to get an additional security label.

If the callback returns CS_SUCCEED, Client-Library sends the list
of security labels to the server.

If the callback returns CS_FAIL, Client-Library aborts the
connection process, causing ct_connect to return CS_FAIL.

Challenge/Response Security Handshakes

Servers can use challenge/response security handshakes to provide
an additional level of login security checking.

To provide the response that this handshake method requires, an
application must:

- Call ct_con_props to set the CS_SEC_CHALLENGE or
CS_SEC_APPDEFINED property to CS_TRUE. CS_SEC_CHALLENGE
turns on Sybase-defined challenge/response security
handshaking; CS_SEC_APPDEFINED turns on Open Server
application-defined challenge/response security handshaking.

- Write a negotiation callback that will return the required
response.

Client-Library/C Reference Manual 2-177

Open Client Release 10.0 Security Features

- Call ct_callback to install the callback either at the context level or
for a specific connection.

When the application calls ct_connect to connect to the server:

- If the server replies with a challenge, then Client-Library calls the
connection’s negotiation callback.

- The negotiation callback generates the response and returns
either CS_CONTINUE, CS_SUCCEED, or CS_FAIL.

- If the callback returns CS_CONTINUE, Client-Library calls the
negotiation callback again, to get an additional response.

If the callback returns CS_SUCCEED, Client-Library sends the
response(s) to the server.

If the callback returns CS_FAIL, Client-Library aborts the
connection process, causing ct_connect to return CS_FAIL.

Encrypted Password Security Handshakes

SQL Server uses encrypted password handshakes.

Most applications are not aware of SQL Server’s password encryption
because Client-Library automatically handles it.

Client-Library applications that are acting as gateways, however, need
to handle password encryption explicitly, passing the server’s
encryption key on to the client and then returning the encrypted
password back to the server.

To do this, a gateway application must:

- Call ct_con_props to set the CS_SEC_ENCRYPTION property to
CS_TRUE.

- Write an encryption callback routine.

- Call ct_callback to install the callback either at the context level or
for a specific connection.

When the gateway calls ct_connect to connect to the server:

- The server responds with an encryption key, causing Client-
Library to trigger the encryption callback.

- The encryption callback passes the key on to the gateway’s client.

- The gateway’s client encrypts the password and returns it to the
encryption callback.

If the callback returns CS_SUCCEED, Client-Library sends the
encrypted password to the server.

2-178 Topics

Security Features Open Client Release 10.0

If the callback returns CS_FAIL, Client-Library aborts the
connection process, causing ct_connect to return CS_FAIL.

Security Datatypes

Secure SQL Server uses sensitivity labels, of datatype sensitivity, to
control access to data. Each row in a Secure SQL Server table has a
sensitivity label.

Secure SQL Server uses boundary labels, of datatype
sensitivity_boundary, to specify either an upper or lower bound for the
sensitivity labels that a process can use or access. Secure SQL Server
uses boundary labels internally, in system tables.

Client-Library supports these two datatypes by providing the type
constants CS_SENSITIVITY_TYPE and CS_BOUNDARY_TYPE.

These type constants differ from other Open Client type constants in
that they do not correspond to similarly-named typedefs. Instead, they
correspond to CS_CHAR.

This means that although Open Client routines accept and return
CS_BOUNDARY_TYPE and CS_SENSITIVITY_TYPE to describe a column or
variable’s datatype, any corresponding program variable must be of
type CS_CHAR.

For example, if an application calls ct_bind with the datatype field of the
CS_DATAFMT structure set to CS_SENSITIVITY_TYPE, the program
variable to which the data is being bound must be of type CS_CHAR.

Secure Bulk Copies

For information on how to bulk copy in to or out from a Secure SQL
Server, see:

• Chapter 3, “Introducing Bulk Copy,” in the Open Client and Open
Server Common Libraries Reference Manual

• Secure SQL Server Utility Programs

Client-Library/C Reference Manual 2-179

Open Client Release 10.0 Server Restrictions

Server Restrictions

SYBASE Open Client is a generic programming interface. This means
that it is functionally independent of the servers to which it interfaces.
Such independence allows Open Client applications to communicate
with not only SYBASE SQL Server and SYBASE Open Server
applications, but if the Open Server application is a gateway, with non-
Sybase servers as well.

Being functionally independent means that Open Client has no
knowledge of the way in which a server may choose to implement
certain functionality. It is possible that the same feature, implemented
by multiple servers, will exhibit various different behaviors. The
behavior of a server feature is specific to the server currently being
accessed.

As an Open Client application developer, you should have a thorough
understanding of the behavior of the server(s) for which you are
writing an application. This includes knowing what functionality is
supported and what restrictions are enforced.

Open Server Restrictions

Open Client and Open Server do not inherit SQL Server restrictions.
This means that communication between Open Client applications
and Open Server applications is not constrained by rules that govern
SQL Server’s behavior.

Communication is constrained, however, by any restrictions built into
an Open Server application. For example, an Open Server application
may decide not to support remote procedure calls (RPCs) by not
installing the SRV_RPC event handler. This is a constraint of which an
Open Client application must be aware.

An important point to note is that Open Client and Open Server are
mirror images of each other. Open Server is capable of receiving
anything that Open Client is capable of sending, and vice versa.
Restrictions arise not only when implementation-specific limitations
are imposed on an Open Server application, but when functionality
available in Open Server is not enabled.

2-180 Topics

Server Restrictions Open Client Release 10.0

SQL Server Restrictions

It is only when an Open Client application accesses SQL Server that
the application must be aware of SQL Server restrictions. For example,
SQL Server has login name requirements: the login name must follow
the rules for SQL Server identifiers and it must be unique. When an
Open Client application accesses a SQL Server, it must adhere to such
requirements.

What follows are some important SQL Server restrictions:

• Dynamic SQL is implemented using temporary stored procedures
and therefore, inherits the restrictions of stored procedures.

• The long variable-length binary datatypes, as well as the long
variable-length character datatypes, are not supported.

• By definition, a cursor is associated with only one select statement.
This means that a stored procedure on which a Client-Library
cursor is declared can contain only a single statement: a select
statement.

• Stored procedures do not support text and image parameters.

• Event notifications are not supported.

• Message commands are not supported.

• The POSIX locale method of localization is not supported.

What Client/Server Features are Supported?

To ascertain some of the client and server features supported by a
particular connection, an application can call ct_capability. ct_capability’s
value parameter returns information about whether the capability is
enabled or not.

An application can find out, among other things:

• What datatypes are supported

• What types of requests are valid

For more information about getting (and setting) client and server
features, see the ct_capability manual page.

Client-Library/C Reference Manual 2-181

Open Client Release 10.0 SQLCA Structure

SQLCA Structure

A SQLCA structure can be used in conjunction with ct_diag to retrieve
Client-Library and server error and informational messages.

A SQLCA structure is defined as follows:

/*
** SQLCA
** The SQL Communications Area structure.
*/

typedef struct _sqlca
{

char sqlcaid[8];
long sqlcabc;
long sqlcode;

struct
}

long sqlerrml;
char sqlerrmc[256];

} sqlerrm;

char sqlerrp[8];
long sqlerrd[6];
char sqlwarn[8];
char sqlext[8];

} SQLCA;

where:

sqlcaid is “SQLCA”.

sqlcabc is ignored.

sqlcode is the server or Client-Library message number. For infor-
mation on how Client-Library maps message numbers to sqlcode,
see ‘‘SQLCODE Structure’’on page 2-183.

sqlerrml is the length of the actual message text (not the length of the
text placed in sqlerrmc).

sqlerrmc is the null-terminated text of the message. If the message is too
long for the array, Client-Library truncates it before appending the
null terminator.

2-182 Topics

SQLCA Structure Open Client Release 10.0

sqlerrp is the null-terminated name of the stored procedure, if any,
being executed at the time of the error. If the name is too long for
the array, Client-Library truncates it before appending the null
terminator.

sqlerrd[2] is the number of rows affected by the current command. This
field is set only if the current message is a “number of rows
affected” message. Otherwise, sqlerrd[2] has a value of
CS_NO_COUNT.

sqlwarn is an array of warnings:

• If sqlwarn[0] is blank, then all other sqlwarn variables are blank. If
sqlwarn[0] is not blank, then at least one other sqlwarn variable is set
to “W”.

• If sqlwarn[1] is “W”, then Client-Library truncated at least one
column’s value when copying it into a host variable.

• If sqlwarn[2] is “W”, then at least one null value was eliminated
from the argument set of a function.

• If sqlwarn[3] is “W”, then some but not all items in a result set have
been bound. This field is set only if the CS_ANSI_BINDS property is
set to CS_TRUE.

• If sqlwarn[4] is “W”, then a dynamic SQL update or delete statement
did not include a where clause.

• If sqlwarn[5] is “W”, then a server conversion or truncation error
has occurred.

sqlext is ignored.

Client-Library/C Reference Manual 2-183

Open Client Release 10.0 SQLCODE Structure

SQLCODE Structure

A SQLCODE structure can be used in conjunction with ct_diag to retrieve
Client-Library and server error and informational message codes.

An application must declare a SQLCODE structure as a long integer.

Client-Library always sets SQLCODE and the sqlcode field of the SQLCA
structure identically.

Mapping Server Messages to SQLCODE

A server message number is mapped to a SQLCODE of 0 if it has a
severity of 0.

Other server messages may be mapped to a SQLCODE of 0 as well.

Server message numbers are inverted before being placed into
SQLCODE. This ensures that SQLCODE is negative if an error has
occurred.

For a list of server messages, execute the Transact-SQL command:

select * from sysmessages

Mapping Client-Library Messages to SQLCODE

The Client-Library message “No rows affected” is mapped to a
SQLCODE of 100.

Client-Library messages with CS_SV_INFORM severities are mapped to
a SQLCODE of 0.

Other Client-Library messages may be mapped to a SQLCODE of 0 as
well.

Client-Library message numbers are inverted before being placed into
SQLCODE. This ensures that SQLCODE is negative if an error has
occurred.

For a list of Client-Library messages, see the Client-Library Messages topics
page.

2-184 Topics

SQLSTATE Structure Open Client Release 10.0

SQLSTATE Structure

A SQLSTATE structure can be used in conjunction with ct_diag to retrieve
SQL state information, if any, associated with a Client-Library or
server message.

An application must declare a SQLSTATE structure as an array of bytes.

Client-Library always sets SQLSTATE and the sqlstate field of the
CS_CLIENTMSG and CS_SERVERMSG structure identically.

Client-Library/C Reference Manual 2-185

Open Client Release 10.0 Structures

Structures

Client-Library structures fall into two categories: “hidden” structures,
whose internals are not documented, and “exposed” structures,
whose internals are documented.

Hidden Structures

Client-Library uses hidden structures to manage a variety of internal
tasks.

A Client-Library application cannot directly access hidden structure
internals. Instead, the application must call Client-Library routines to
allocate, manipulate, and de-allocate hidden structures.

Hidden structures include:

• CS_BLKDESC, a control structure used by Client-Library’s and
Server-Library’s bulk copy routines.

• CS_CAP_TYPE, which is used to store capability information.

• CS_COMMAND, which is used to send commands and process
results.

• CS_CONNECTION, which defines an individual client/server
connection.

• CS_CONTEXT, which defines a Client-Library programming
context.

• CS_LOCALE, which is used to store localization information.

• CS_LOGINFO, the server login information structure. This structure,
which is associated with a CS_CONNECTION, contains server login
information such as user name and password.

The following table lists the routines and macros that allocate,
manipulate, and de-allocate hidden structures:

Structure: Routines: For More Information, See:

CS_BLKDESC blk_alloc, blk_drop The Open Client and Open
Server Common Libraries
Reference Manual.

Table 2-34: Routines that manipulate hidden structures

2-186 Topics

Structures Open Client Release 10.0

Exposed Structures

Exposed structures provide a way for Client-Library to exchange
information with an application. Typically, applications set fields in an
exposed structure before passing the structure as a parameter to a
Client-Library routine, and retrieve the values of fields in an exposed
structure after calling a Client-Library routine.

Exposed structures include:

• CS_BROWSEDESC, the browse descriptor structure

• CS_CLIENTMSG, the Client-Library message structure

• CS_DATAFMT, the data format structure

• CS_IODESC, the I/O descriptor structure

• CS_SERVERMSG, the server message structure

• SQLCA, the SQL Communications Area structure

• SQLCODE, the SQL Code structure

CS_CAP_TYPE CS_CLR_CAPMASK,
CS_SET_CAPMASK,
CS_TST_CAPMASK

‘‘Setting and Retrieving
Multiple Capabilities’’ on
page 2-34

CS_COMMAND ct_cmd_alloc,
ct_cmd_props,
ct_cmd_drop

‘‘Basic Control Structures’’
on page 1-7

CS_CONNECTION ct_con_alloc,
ct_con_props,
ct_con_drop

‘‘Basic Control Structures’’
on page 1-7

CS_CONTEXT cs_ctx_alloc,
ct_config, cs_config,
cs_ctx_drop

‘‘Basic Control Structures’’ on
page 1-7

CS_LOCALE cs_loc_alloc,
cs_locale,
cs_loc_drop

‘‘International Support’’ on
page 2-84 of this manual.

The Open Client and Open
Server Common Libraries
Reference Manual.

CS_LOGINFO ct_getloginfo,
ct_setloginfo

The manual pages for
ct_getloginfo and ct_setloginfo
in Chapter 3 of this manual.

Structure: Routines: For More Information, See:

Table 2-34: Routines that manipulate hidden structures (continued)

Client-Library/C Reference Manual 2-187

Open Client Release 10.0 Structures

• SQLSTATE, the SQL State structure

These exposed structures are documented on topics pages.

2-188 Topics

Text and Image Open Client Release 10.0

Text and Image

text and image are SQL Server datatypes designed to hold large text or
image values. The text datatype will hold up to 2, 147,483,647 bytes of
printable characters. The image datatype will hold up to 2,147,483,647
bytes of binary data.

Because they can be so large, text and image values are not actually
stored in database tables. Instead, a pointer to the text or image value
is stored in the table. This pointer is called a “text pointer.”

To ensure that competing applications do not wipe out one another’s
modifications to the database, a timestamp is associated with each text
or image column. This timestamp is called a “text timestamp.”

Client-Library stores the text pointer and text timestamp for a text or
image column in an I/O descriptor structure, the CS_IODESC. The I/O
descriptor for a column also contains other information about the
column, including its name and datatype.

For detailed information on the CS_IODESC structure, see the CS_IODESC
topics page.

Retrieving a Text or Image Column

An application can retrieve text or image columns in two ways:

• It can select the columns, bind the columns, and fetch rows. In
other words, an application can retrieve and process text and
image columns in the same way it retrieves and processes any
other type of column.

• It can select the columns, use ct_fetch to loop through result rows,
and use ct_get_data to retrieve data in the text and image columns.
An application will typically use this method when processing text
or image values that are too large for convenient binding.

Using ct_get_data to Fetch Text and Image Values

Only columns that follow the last column bound with ct_bind are
available for use with ct_get_data.

For example, if an application selects four columns, all of which are
text, and binds the first and third columns to program variables, then
the application cannot use ct_get_data to retrieve the text contained in
the second column. It can still, however, use ct_get_data to retrieve the
text in the fourth column.

Client-Library/C Reference Manual 2-189

Open Client Release 10.0 Text and Image

To retrieve a text or image value using ct_get_data, an application
follows these steps:

1. Execute a command that generates a result set that contains text or
image columns.

An application can use a language command, RPC command, or
dynamic SQL command to generate a result set containing text
or image columns.

For example, the pic column in the au_pix table of the pubs2
database contains authors’ pictures. To retrieve them, an appli-
cation might execute the following language command:

ct_command(cmd, CS_LANG_CMD,
"select pic from au_pix”,
CS_NULLTERM, CS_UNUSED);

ct_send(cmd);

2. Process the result set containing the text or image column.

An application uses ct_fetch to loop through the rows contained
in the result set. Inside the loop, for each unbound text or image
column:

- The application can call ct_get_data in a loop to retrieve the text or
image data for the column.

- The application can call ct_data_info to get an I/O descriptor that
can be used to update the column at a later time.

Most applications will use a program structure similar to the
following:

while ct_fetch is returning rows
process any bound columns
for each unbound text or image column

while ct_get_data is returning data
process the data

end while
ct_data_info to get the column’s CS_IODESC

end for
end while

Alternatively, for each unbound text or image column, an appli-
cation can:

- Call ct_get_data with the parameter buflen as 0, so that it returns no
data but does refresh the I/O descriptor for the column.

- Call ct_data_info to get the I/O descriptor for the column. The
total_txtlen field in this structure represents the total length of the
text or image value.

2-190 Topics

Text and Image Open Client Release 10.0

- Call ct_get_data as many times as necessary to retrieve the value.

This method has the advantage of allowing an application to
determine the total length of a text or image value before
retrieving it.

Updating a Text or Image Column

An application can only update a value in a text or image column if it
has a current I/O descriptor for the column value that it needs to
update.

To retrieve the current I/O descriptor for a column value, an
application must:

1. Call ct_fetch to fetch the row of interest.

2. Call ct_get_data to retrieve the column’s value and refresh the I/O
descriptor for the column. To refresh the I/O descriptor without
retrieving any data for the column, call ct_get_data with buflen as 0.

3. Call ct_data_info to retrieve the I/O descriptor.

Once it has the current I/O descriptor for a column value, the
application can perform the update:

1. Call ct_command to initiate a send-data command.

2. Modify the I/O descriptor, if necessary. Most applications will
change only the values of the locale, total_txtlen, or log_on_update
fields.

3. Call ct_data_info to set the I/O descriptor for the column value. The
textptr field of the I/O descriptor structure identifies the target
column of the send-data operation.

4. Call ct_send_data in a loop to write the entire text or image value.
Each call to ct_send_data writes a portion of the text or image value.

5. Call ct_send to send the command.

6. Call ct_results to process the results of the command. An update of
a text or image value generates a a parameter result set containing
a single parameter, the new text timestamp for the value. If the
application plans to update this column value again, it must save
the new timestamp and copy it into the CS_IODESC for the column
value before calling ct_data_info (step 3, above) to set the I/O
descriptor for the new update.

Most applications will use a program structure similar to the following
to update text or image columns:

Client-Library/C Reference Manual 2-191

Open Client Release 10.0 Text and Image

Figure 2-2: Updating text or image columns

Populating a Table Containing Text or Image Columns

An application’s method of populating a table containing text or
image columns will depend on the size of the data values to be
inserted.

ct_con_alloc to allocate connection1 and connection2
ct_cmd_alloc to allocate cmd1 and cmd2

ct_command(cmd1) to select columns (including text) from table
ct_send to send the command
while ct_results returns CS_SUCCEED

(optional) ct_res_info to get description of result set
(optional) ct_describe to get descriptons of columns
(optional) ct_bind if binding any columns

while ct_fetch(cmd1) returns rows
for each text column

/* Retrieve the current CS_IODESC for the column */
if you want the column’s data, loop on ct_get_data

while there’s data to retrieve
if you don’t want the column’s data, call ct_get_data

once with buflen of 0 to refresh the CS_IODESC
ct_data_info(cmd1, CS_GET) to get the CS_IODESC

/* Update the column */
ct_command(cmd2) to initiate a send-data command
if necessary, modify fields in the CS_IODESC
ct_data_info(cmd2, CS_SET) to set the CS_IODESC for

the column
while there is data to send

ct_send_data(cmd2) to send a chunk of data
endwhile
ct_send(cmd2) to send the send-data command
ct_results(cmd2) to process the send-data results

endfor
endwhile

endwhile

2-192 Topics

Text and Image Open Client Release 10.0

Smaller Text and Image Values

Most applications can embed text or image values of less than about
100K in an insert statement:

insert blurbs values ("486-29-1786", "If Chastity
Locksley didn’t exist, this troubled...")

insert au_pix values ("486-29-1786", 0x67f44c...,
"ICT", "30220", "626", "635")

➤ Note
Be aware that MS Windows applications are limited by the amount of memory

available in the data segment.

Larger Text and Image Values

Because it results in improved performance, the following method is
recommended when populating a SQL Server table with text or image
values larger than 100K:

1. insert all data into the row except the text or image values.

2. update the row, setting the value of the text or image columns to
NULL. This step is necessary because a text or image column row
that contains a null value will have a valid text pointer only if the
null value was explicitly entered with the update statement.

3. select the row. You must specifically select the text or image
columns. This step is necessary in order to provide Client-Library
with current I/O descriptor information.

4. Call ct_results and ct_fetch to process the results of the select.
Although the actual data returned by this select can be thrown
away, the application must retrieve the I/O descriptor for each
text or image column in the row.

For information on retrieving an I/O descriptor, see ‘‘Updating a
Text or Image Column’’ on page 2-190.

5. Update the columns as described in ‘‘Updating a Text or Image
Column’’ on page 2-190.

Client-Library/C Reference Manual 2-193

Open Client Release 10.0 Types

Types

Open Client Client-Library supports a wide range of datatypes. These
datatypes are shared with Open Client CS-Library and Open Server
Server-Library. In most cases, they correspond directly to SQL Server
datatypes.

The “Datatype Summary” chart, below, lists Open Client/Server type
constants, their corresponding typedefs, and their corresponding SQL
Server or Secure SQL Server datatypes, if any.

A list of Open Client routines that are useful in manipulating
datatypes follows the summary chart, together with more detailed
information on each datatype.

For additional information on datatypes, see Chapter 3, “Structures,
Datatypes, Constants, and Conventions” in the Client-Library
Programmer’s Guide.

Datatype Summary

The following table lists Open Client/Server type constants, their
corresponding typedefs, and their corresponding SQL Server or
Secure SQL Server datatypes, if any:

Open Client/Server
Type Constant Description Corresponding Open

Client/Server Typedef

Corresponding
Server
Datatype

Binary
types

CS_BINARY_TYPE Binary type CS_BINARY binary,
varbinary

CS_LONGBINARY_TYPE Long binary type CS_LONGBINARY NONE

CS_VARBINARY_TYPE Variable-length
binary type

CS_VARBINARY NONE

Bit types CS_BIT_TYPE Bit type CS_BIT boolean

Character
types

CS_CHAR_TYPE Character type CS_CHAR char,
varchar

CS_LONGCHAR_TYPE Long character type CS_LONGCHAR NONE

CS_VARCHAR_TYPE Variable-length
character type

CS_VARCHAR NONE

Table 2-35: Datatype summary

2-194 Topics

Types Open Client Release 10.0

Routines That Manipulate Datatypes

Open Client CS-Library provides several routines that are useful for
manipulating datatypes. They include:

• cs_calc, which performs arithmetic operations on decimal, money,
and numeric datatypes

• cs_cmp, which compares datetime, decimal, money, and numeric
datatypes

• cs_convert, which converts a data value from one datatype to
another

• cs_dt_crack, which converts a machine readable datetime value into
a user-accessible format

Datetime
types

CS_DATETIME_TYPE 8-byte datetime type CS_DATETIME datetime

CS_DATETIME4_TYPE 4-byte datetime type CS_DATETIME4 smalldatetime

Numeric
types

CS_TINYINT_TYPE 1-byte integer type CS_TINYINT tinyint

CS_SMALLINT_TYPE 2-byte integer type CS_SMALLINT smallint

CS_INT_TYPE 4-byte integer type CS_INT int

CS_DECIMAL_TYPE Decimal type CS_DECIMAL decimal

CS_NUMERIC_TYPE Numeric type CS_NUMERIC numeric

CS_FLOAT_TYPE 8-byte float type CS_FLOAT float

CS_REAL_TYPE 4-byte float type CS_REAL real

Money
types

CS_MONEY_TYPE 8-byte money type CS_MONEY money

CS_MONEY4_TYPE 4-byte money type CS_MONEY4 smallmoney

Security
types

CS_BOUNDARY_TYPE Secure SQL Server
boundary type

CS_CHAR sensitivity_
boundary

CS_SENSITIVITY_TYPE Secure SQL Server
sensitivity type

CS_CHAR sensitivity

Text and
image
types

CS_TEXT_TYPE Text type CS_TEXT text

CS_IMAGE_TYPE Image type CS_IMAGE image

Open Client/Server
Type Constant Description Corresponding Open

Client/Server Typedef

Corresponding
Server
Datatype

Table 2-35: Datatype summary (continued)

Client-Library/C Reference Manual 2-195

Open Client Release 10.0 Types

• cs_dt_info, which sets or retrieves language-specific datetime
information

• cs_strcmp, which compares two strings

These routines are documented in the Open Client and Open Server
Common Libraries Reference Manual.

Open Client Datatypes

Binary Types

Open Client has three binary types, CS_BINARY, CS_LONGBINARY, and
CS_VARBINARY.

CS_BINARY corresponds to the SQL Server types binary and varbinary.
That is, Client-Library interprets both the server binary and varbinary
types as CS_BINARY. For example, ct_describe returns CS_BINARY_TYPE
when describing a result column that has the server datatype varbinary.

CS_BINARY is defined as:

typedef unsigned char CS_BINARY;

◆ WARNING!
CS_LONGBINARY and CS_VARBINARY do not correspond to any SQL
Server datatypes. Specifically, CS_VARBINARY does not correspond to the
SQL Server datatype varbinary.

CS_LONGBINARY does not correspond to any SQL Server type, but
some Open Server applications may support CS_LONGBINARY. An
application can use the CS_DATA_LBIN capability to determine whether
an Open Server connection supports CS_LONGBINARY. If it does, then
ct_describe can return CS_LONGBINARY when describing a result data
item.

A CS_LONGBINARY value has a maximum length of 2,147,483,647
bytes. CS_LONGBINARY is defined as:

typedef unsigned char CS_LONGBINARY;

CS_VARBINARY does not correspond to any SQL Server type. For this
reason, Open Client routines do not return CS_VARBINARY_TYPE.
CS_VARBINARY is provided to enable non-C programming language
veneers to be written for Open Client. Typical client applications will
not use CS_VARBINARY.

2-196 Topics

Types Open Client Release 10.0

CS_VARBINARY is defined as:

typedef struct _cs_varybin
{

CS_SMALLINT len;
CS_BYTE array[CS_MAX_CHAR];

} CS_VARBINARY;

where:

len is the length of the binary array.

array is the array itself.

Although CS_VARBINARY variables are used to store variable-length
values, CS_VARBINARY is considered to be a fixed-length type. This
means that an application does not typically need to provide Client-
Library with the length of a CS_VARBINARY variable. For example,
ct_bind ignores the value of datafmt→maxlength when binding to a
CS_VARBINARY variable.

Bit Types

Open Client supports a single bit type, CS_BIT. This type is intended to
hold server bit (or boolean) values of 0 or 1. When converting other
types to bit, all non-zero values are converted to 1:

typedef unsigned char CS_BIT;

Character Types

Open Client has three character types, CS_CHAR, CS_LONGCHAR, and
CS_VARCHAR:

CS_CHAR corresponds to the SQL Server types char and varchar. That is,
Client-Library interprets both the server char and varchar types as
CS_CHAR. For example, ct_describe returns CS_CHAR_TYPE when
describing a result column that has the server datatype varchar.

CS_CHAR is defined as:

typedef char CS_CHAR;

◆ WARNING!
CS_LONGCHAR and CS_VARCHAR do not correspond to any SQL Server
datatypes. Specifically, CS_VARCHAR does not correspond to the SQL
Server datatype varchar.

Client-Library/C Reference Manual 2-197

Open Client Release 10.0 Types

CS_LONGCHAR does not correspond to any SQL Server type, but some
Open Server applications may support CS_LONGCHAR. An application
can use the CS_DATA_LCHAR capability to determine whether an Open
Server connection supports CS_LONGCHAR. If it does, then ct_describe
can return CS_LONGCHAR when describing a result data item.

A CS_LONGCHAR value has a maximum length of 2,147,483,647 bytes.
CS_LONGCHAR is defined as:

typedef unsigned char CS_LONGCHAR;

CS_VARCHAR does not correspond to any SQL Server type. For this
reason, Open Client routines do not return CS_VARCHAR_TYPE.
CS_VARCHAR is provided to enable non-C programming language
veneers to be written for Open Client. Typical client applications will
not use CS_VARCHAR.

CS_VARCHAR is defined as:

typedef struct _cs_varchar
{

CS_SMALLINT len;
CS_CHAR str[CS_MAX_CHAR];

} CS_VARCHAR;

where:

len is the length of the string.

str is the string itself. Note that str is not a null-terminated string.

Although CS_VARCHAR variables are used to store variable-length
values, CS_VARCHAR is considered to be a fixed-length type. This
means that an application does not typically need to provide Client-
Library with the length of a CS_VARCHAR variable. For example, ct_bind
ignores the value of datafmt→maxlength when binding to a
CS_VARCHAR variable.

Datetime Types

Open Client supports two datetime types, CS_DATETIME and
CS_DATETIME4. These datatypes are intended to hold 8-byte and 4-byte
datetime values, respectively.

An Open Client application can use the CS-Library Routine cs_dt_crack
to extract date parts (year, month, day, etc.) from a datetime structure.

CS_DATETIME corresponds to the SQL Server datetime datatype. The
range of legal CS_DATETIME values is from January 1, 1753 to December
31, 9999, with a precision of 1/300th of a second (3.33 milliseconds):

2-198 Topics

Types Open Client Release 10.0

typedef struct _cs_datetime
{

CS_INT dtdays;
CS_INT dttime;

} CS_DATETIME;

where:

dtdays is the number of days since 1/1/1900.

dttime is the number of 300ths of a second since midnight.

CS_DATETIME4 corresponds to the SQL Server smalldatetime datatype.
The range of legal CS_DATETIME4 values is from January 1, 1900 to June
6, 2079, with a precision of 1 minute:

typedef struct _cs_datetime4
{

CS_USHORT days;
CS_USHORT minutes;

} CS_DATETIME4;

where:

days is the number of days since 1/1/1900.

minutes is the number of minutes since midnight.

Numeric Types

Open Client supports a wide range of numeric types.

Integer types include CS_TINYINT, a 1-byte integer; CS_SMALLINT, a 2-
byte integer, and CS_INT, a 4-byte integer:

typedef unsigned char CS_TINYINT;

typedef short CS_SMALLINT;

typedef long CS_INT;

CS_REAL corresponds to the SQL Server datatype real. It is
implemented as a C-language float type:

typedef float CS_REAL;

CS_FLOAT corresponds to the SQL Server datatype float. It is
implemented as a C-language double type:

typedef double CS_FLOAT;

CS_NUMERIC and CS_DECIMAL correspond to the SQL Server
datatypes numeric and decimal. These types provide platform-
independent support for numbers with precision and scale.

Client-Library/C Reference Manual 2-199

Open Client Release 10.0 Types

The SQL Server datatypes numeric and decimal are equivalent; and
CS_DECIMAL is defined as CS_NUMERIC:

typedef struct _cs_numeric
{

CS_BYTE precision;
CS_BYTE scale;
CS_BYTE array[CS_MAX_NUMLEN];

} CS_NUMERIC;

typedef CS_NUMERIC CS_DECIMAL;

where:

precision is the precision of the numeric value. At the current
time, legal values for precision are from 1 to 77. The default
precision is 18. CS_MIN_PREC, CS_MAX_PREC, and CS_DEF_PREC
define the minimum, maximum, and default precision values,
respectively.

scale is the scale of the numeric value. At the current time, legal
values for scale are from 0 to 77. The default scale is 0. CS_MIN_-
SCALE, CS_MAX_SCALE, and CS_DEF_PREC define the minimum,
maximum, and default scale values, respectively.

scale must be less than or equal to precision.

CS_DECIMAL types use the same default values for precision and scale
as CS_NUMERIC types.

Money Types

Open Client supports two money types, CS_MONEY and CS_MONEY4.
These datatypes are intended to hold 8-byte and 4-byte money values,
respectively.

CS_MONEY corresponds to the SQL Server money datatype. The range
of legal CS_MONEY values is between +/- $922,337,203,685,477.5807:

typedef struct _cs_money
{

CS_INT mnyhigh;
CS_UINT mnylow;

} CS_MONEY;

CS_MONEY4 corresponds to the SQL Server smallmoney datatype. The
range of legal CS_MONEY4 values is between -$214,748.3648 and
+$214,748.3647:

2-200 Topics

Types Open Client Release 10.0

typedef struct _cs_money4
{

CS_INT mny4;
} CS_MONEY4;

Security Types

Open Client supports Secure SQL Server’s sensitivity_boundary and
sensitivity types by defining the type constants CS_BOUNDARY_TYPE
and CS_SENSITIVITY_TYPE.

These type constants differ from other Open Client type constants in
that they do not correspond to similarly-named typedefs. Instead, they
correspond to CS_CHAR.

This means that although Open Client routines accept and return
CS_BOUNDARY_TYPE and CS_SENSITIVITY_TYPE to describe a column or
variable’s datatype, any corresponding program variable must be of
type CS_CHAR.

For example, if an application calls ct_bind with the datatype field of the
CS_DATAFMT structure set to CS_SENSITIVITY_TYPE, the program
variable to which the data is being bound must be of type CS_CHAR.

Text and Image Types

Open Client supports a text datatype, CS_TEXT, and an image datatype,
CS_IMAGE.

CS_TEXT corresponds to the server datatype text, which describes a
variable-length column containing up to 2,147,483,647 bytes of
printable character data. CS_TEXT is defined as unsigned character:

typedef unsigned char CS_TEXT;

CS_IMAGE corresponds to the server datatype image, which describes a
variable-length column containing up to 2,147,483,647 bytes of binary
data. CS_IMAGE is defined as unsigned character:

typedef unsigned char CS_IMAGE;

Open Client User-Defined Datatypes

An application that needs to use a datatype that is not included in the
standard Open Client type set can create a user-defined datatype.

An Client-Library application creates a user-defined type by declaring
it:

typedef char CODE_NAME;

Client-Library/C Reference Manual 2-201

Open Client Release 10.0 Types

Because the Open Client routines ct_bind and cs_set_convert use integer
symbolic constants to identify datatypes, it is often convenient for an
application to declare a type constant for a user-defined type. User-
defined types must be defined as greater than or equal to CS_USERTYPE:

#define CODE_NAME_TYPE CS_USERTYPE + 2;

Once a user-defined type has been created, an application can:

• Call cs_set_convert to install custom conversion routines to convert
between standard Open Client types and the user-defined type

• Call cs_setnull to define a null substitution value for the user-
defined type.

After conversion routines are installed, an application can bind server
results to a user-defined type:

mydatafmt.datatype = CODE_NAME_TYPE;
ct_bind(cmd, 1, &mydatafmt, mycodename, NULL,

NULL);

Custom conversion routines are called transparently, whenever
required, by ct_bind and cs_convert.

➤ Note
Do not confuse Open Client user-defined types with SQL Server user-defined

types. Open Client user-defined types are C-language types, declared within

an application. SQL Server user-defined types are database column datatypes,

created using the system stored procedure sp_addtype.

2-202 Topics

Types Open Client Release 10.0

Routines

Client-Library/C Reference Manual 3-1

3. Routines

This chapter contains a manual page for each Client-Library routine.

3

3-2 Routines

Open Client Release 10.0

Client-Library/C Reference Manual 3-3

List of Routines

ct_bind
Bind server results to program variables.

ct_br_column
Retrieve information about a column generated by a browse-mode select.

ct_br_table
Return information about browse mode tables.

ct_callback
Install or retrieve a Client-Library callback routine.

ct_cancel
Cancel a command or the results of a command.

ct_capability
Set or retrieve a client/server capability.

ct_close
Close a server connection.

ct_cmd_alloc
Allocate a CS_COMMAND structure.

ct_cmd_drop
De-allocate a CS_COMMAND structure.

ct_cmd_props
Set or retrieve command structure properties.

ct_command
Initiate a language, package, RPC, message, or send-data command.

ct_compute_info
Retrieve compute result information.

ct_con_alloc
Allocate a CS_CONNECTION structure.

ct_con_drop
De-allocate a CS_CONNECTION structure.

3-4 Routines

List of Routines Open Client Release 10.0

ct_con_props
Set or retrieve connection structure properties.

ct_config
Set or retrieve context properties.

ct_connect
Connect to a server.

ct_cursor
Initiate a Client-Library cursor command.

ct_data_info
Define or retrieve a data I/O descriptor structure.

ct_debug
Manage debug library operations.

ct_describe
Return a description of result data.

ct_diag
Manage in-line error handling.

ct_dynamic
Initiate a prepared dynamic SQL statement command.

ct_dyndesc
Perform operations on a dynamic SQL descriptor area.

ct_exit
Exit Client-Library.

ct_fetch
Fetch result data.

ct_get_data
Read a chunk of data from the server.

ct_getformat
Return the server user-defined format string associated with a result column.

ct_getloginfo
Transfer TDS login response information from a CS_CONNECTION structure to
a newly-allocated CS_LOGINFO structure.

Client-Library/C Reference Manual 3-5

Open Client Release 10.0 List of Routines

ct_init
Initialize Client-Library for an application context.

ct_keydata
Specify or extract the contents of a key column.

ct_labels
Define a security label or clear security labels for a connection.

ct_options
Set, retrieve, or clear the values of server query-processing options.

ct_param
Define a command parameter.

ct_poll
Poll connections for asynchronous operation completions and registered
procedure notifications.

ct_recvpassthru
Receive a TDS (Tabular Data Stream) packet from a server.

ct_remote_pwd
Define or clear passwords to be used for server-to-server connections.

ct_res_info
Retrieve current result set or command information.

ct_results
Set up result data to be processed.

ct_send
Send a command to the server.

ct_send_data
Send a chunk of text or image data to the server.

ct_sendpassthru
Send a TDS (Tabular Data Stream) packet to a server.

ct_setloginfo
Transfer TDS login response information from a CS_LOGINFO structure to a
CS_CONNECTION structure.

ct_wakeup
Call a connection’s completion callback.

3-6 Routines

List of Routines Open Client Release 10.0

Client-Library/C Reference Manual 3-7

Open Client Release 10.0 ct_bind

ct_bind

Function

Bind server results to program variables.

Syntax

CS_RETCODE ct_bind(cmd, item, datafmt, buffer,
copied, indicator)

CS_COMMAND *cmd;
CS_INT item;
CS_DATAFMT *datafmt;
CS_VOID *buffer;
CS_INT *copied;
CS_SMALLINT *indicator;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

item – An integer representing the number of the column, parameter,
or status to bind.

When binding a column, item is the column’s column number. The
first column in a select statement’s select-list is column number 1,
the second number 2, and so forth.

When binding a compute column, item is the column number of
the compute column. Compute columns are returned in the order
in which they are listed in the compute clause. The first column
returned is number 1.

When binding a return parameter, item is the parameter number
of the parameter. The first parameter returned by a stored
procedure is number 1. Stored procedure return parameters are
returned in the same order as the parameters were originally
specified in the stored procedure’s create procedure statement. This is
not necessarily the same order as specified in the RPC command
that invoked the stored procedure. In determining what number to
pass as item do not count non-return parameters. For example, if
the second parameter in a stored procedure is the only return
parameter, pass item as 1.

When binding a stored procedure return status, item must be 1, as
there can be only a single status in a return status result set.

3-8 Routines

ct_bind Open Client Release 10.0

To clear all bindings, pass item as CS_UNUSED, with datafmt, buffer,
copied, and indicator as NULL.

datafmt – A pointer to the CS_DATAFMT structure that describes the
destination variable(s).

The chart below lists the fields in *datafmt that are used by ct_bind,
and contains general information about the fields. ct_bind ignores
fields that it does not use:

Field
name:

When is the field
used? Set the field to:

name Not used. Not applicable.

namelen Not used. Not applicable.

datatype When binding all
types of results.

A type constant (CS_xxx_TYPE) representing the datatype of the
destination variable.

All type constants listed on the Types topics page are valid. Open
Client user-defined types are also valid, provided that user-
supplied conversion routines have been installed via
cs_set_convert. If datatype is an Open Client user-defined type,
ct_bind does not validate any CS_DATAFMT fields except count.

ct_bind supports a wide range of type conversions, so datatype can
be different from the type returned by the server. For instance, by
specifying a destination type of CS_FLOAT_TYPE, a CS_MONEY
result can be bound to a CS_FLOAT program variable. The
appropriate data conversion happens automatically. For a list of
the data conversions provided by Client-Library, see the manual
page for cs_willconvert.

If datatype is CS_BOUNDARY_TYPE or CS_SENSITIVITY_TYPE,
the *buffer program variable must be of type CS_CHAR.

format When binding
results to character-
or binary-type
destination
variables; otherwise
CS_FMT_UNUSED.

A bit-mask of the following symbols:

For character and text destinations only:
CS_FMT_NULLTERM to null-terminate the data, or
CS_FMT_PADBLANK to pad to the full length of the variable with
spaces.

For character, binary, text, and image destinations:
CS_FMT_PADNULL to pad to the full length of the variable with
nulls.

For any type of destination:
CS_FMT_UNUSED if no format information is being provided.

Table 3-1: Fields in the CS_DATAFMT structure (ct_bind)

Client-Library/C Reference Manual 3-9

Open Client Release 10.0 ct_bind

maxlength When binding all
types of results to
non-fixed-length
types.

When binding to
fixed-length types,
maxlength is ignored.

The length of the *buffer destination variable. If buffer points to an
array, set maxlength to the length of a single element of the array.

When binding to character or binary destinations, maxlength must
describe the total length of the destination variable, including any
space required for special terminating bytes, such as a null
terminator.

If maxlength indicates that *buffer is not large enough to hold a
result data item, then at fetch time ct_fetch discards the result item
that is too large, fetches any remaining items in the row, and
returns CS_ROW_FAIL. If this occurs the contents of *buffer are
undefined.

scale Only when binding
to numeric or
decimal destinations.

The scale to be used for the destination variable.

If the source data is the same type as the destination, then scale can
be set to CS_SRC_VALUE to indicate that the destination should
pick up its value for scale from the source data.

scale must be less than or equal to precision.

precision Only when binding
to numeric or
decimal destinations.

The precision to be used for the destination variable.

If the source data is the same type as the destination, then precision
can be set to CS_SRC_VALUE to indicate that the destination
should pick up its value for precision from the source data.

precision must be greater than or equal to scale.

status Not used. Not applicable.

count When binding all
types of results.

count is the number of result rows to be copied to program
variables per ct_fetch call.

If count is larger than the number of available rows, only the
available rows are copied. (Note that only regular row and cursor
row result sets will ever contain multiple rows.)

count must have the same value for all columns in a result set, with
one exception: an application can intermix counts of 0 and 1.

If count is 0, 1 row is fetched.

usertype Not used. Not applicable.

locale When binding all
types of results.

A pointer to a CS_LOCALE structure containing locale
information for the *buffer destination variable.

If custom locale information is not required for the variable, pass
locale as NULL.

Field
name:

When is the field
used? Set the field to:

Table 3-1: Fields in the CS_DATAFMT structure (ct_bind) (continued)

3-10 Routines

ct_bind Open Client Release 10.0

buffer – The address of an array of datafmt→count variables, each of
which is of size datafmt→maxlength.

 *buffer is the program variable or variables to which ct_bind binds
the server results. When the application calls ct_fetch to fetch the
result data, it is copied into this space.

If buffer is NULL, ct_bind clears the binding for this result item. Note
that if buffer is NULL, datafmt, copied, and indicator must also be
NULL.

copied – The address of an array of datafmt→count integer variables. At
fetch time, ct_fetch fills this array with the lengths of the copied data.
copied is an optional parameter and can be passed as NULL.

indicator – The address of an array of datafmt→count CS_SMALLINT
variables. At fetch time, each variable is used to indicate certain
conditions about the fetched data. indicator is an optional
parameter and can be passed as NULL.

The following table lists the values that an indicator variable can
have:

Returns

Value of indicator variable: Indicates:

-1 The fetched data was NULL. In this case, no data
is copied to *buffer.

0 The fetch was successful.

integer value The actual length of the server data, if the fetch
resulted in truncation.

Table 3-2: Values for indicator (ct_bind)

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-3: Return values (ct_bind)

Client-Library/C Reference Manual 3-11

Open Client Release 10.0 ct_bind

Common reasons for a ct_bind failure include:

• An illegal datatype specified via datafmt→datatype.

• A bad datafmt→locale pointer. Initialize datafmt→locale to NULL if it
is not used.

• Requested conversion is not available.

Comments

• ct_bind can be used to bind a regular or cursor result column, a
compute column, a return parameter, or a stored procedure status
number. When binding a regular or cursor column, multiple rows
of the column can be bound with a single call to ct_bind.

➤ Note
Message, describe, row format, and compute format results are not bound.

This is because result sets of type CS_MSG_RESULT, CS_DESCRIBE_RESULT,

CS_ROWFMT_RESULT, and CS_COMPUTEFMT_RESULT contain no fetchable

data. Instead, these result sets indicate that certain types of information are

available. An application can retrieve the information by calling other Client-

Library routines, such as ct_res_info. For more information on how to process

these types of results, see the Results topics page, 2-164.

• Binding associates a result data item with a program variable. At
fetch time, each ct_fetch call copies a row-instance of the data item
into the variable with which the item is associated.

If a result data item is very large (for example, a large text or
image column), it is often more convenient for an application to
use ct_get_data to retrieve the data item’s value in chunks, rather
than copying the entire value to a bound variable. For more
information on ct_get_data, see the ct_get_data manual page, 3-148,
and the Text and Image topics page, 2-188.

• ct_bind binds only the current result type. ct_results indicates the
current result type via its result_type parameter. For example, if
ct_results sets *result_type to CS_STATUS_RESULT, a return status is
available for binding.

• An application can call ct_res_info to determine the number of items
in the current result set, and can call ct_describe to get a description
of each item.

3-12 Routines

ct_bind Open Client Release 10.0

• An application can only bind a result item to a single program
variable. If an application binds a result item to multiple variables,
only the last binding has any effect.

• An application can re-bind while actively fetching rows. That is, an
application can call ct_bind inside a ct_fetch loop if it needs to change
a result item’s binding.

• If not changed, binding for a particular type of result remains in
effect until ct_results returns CS_CMD_DONE to indicate that the
results of a logical command are completely processed. This saves
an application the trouble of re-binding interspersed regular row
results and compute row results that are generated by the same
command.

For example, a language command containing a select statement
with compute and order by clauses can generate multiple buffers
full of regular row results intermixed with compute row results.
Because they are generated by the same command, each buffer
of regular row results and each buffer of compute row results
will contain identical columns. An application need only bind
the first buffer of regular row results and the first buffer of
compute results. These bindings will remain in effect until both
result sets are completely processed.

• An application can use ct_bind to bind to Open Client user-defined
datatypes for which conversion routines have been installed. To
install a conversion routine for a user-defined datatype, an
application calls cs_set_convert. For more information on Open
Client user-defined types, see ‘‘Open Client User-Defined
Datatypes’’ on page 2-200.

Clearing Bindings

• To clear the binding for a result item, call ct_bind with buffer, datafmt,
copied, and indicator as NULL.

• To clear all bindings, call ct_bind with item as CS_UNUSED and buffer,
datafmt, copied, and indicator as NULL.

• It is not an error to clear a non-existent binding.

Client-Library/C Reference Manual 3-13

Open Client Release 10.0 ct_bind

Array Binding

• Array binding is the process of binding a result column to an array
of program variables. At fetch time, multiple rows’ worth of a
column are copied to an array of variables with a single ct_fetch call.
An application indicates array binding by setting datafmt →count to
a value greater than 1.

• Array binding is only practical for regular row and cursor results.
This is because other types of results are considered to be the
equivalent of a single row.

• When binding columns to arrays, all ct_bind calls in the sequence of
calls binding the columns must use the same value for
datafmt→count. For example, when binding three columns to
arrays, it is an error to use a count of five in the first two ct_bind calls
and a count of three in the last.

However, an application can intermix counts of 0 and 1. counts of
0 and 1 are considered to be equivalent because they both cause
ct_fetch to fetch a single row.

Example

CS_RETCODE retcode;
CS_INT num_cols;
CS_INT i;
CS_INT j;
CS_INT row_count = 0;
CS_INT rows_read;
CS_INT disp_len;
CS_DATAFMT *datafmt;
EX_COLUMN_DATA *coldata;

/* Determine the number of columns in this result set */
....CODE DELETED.....

/*
** Our program variable, called 'coldata', is an array of
** EX_COLUMN_DATA structures. Each array element represents
** one column. Each array element will be re-used for each
** row.
**
** First, allocate memory for the data element to process.
*/
coldata = (EX_COLUMN_DATA *)malloc(num_cols *

sizeof (EX_COLUMN_DATA));

3-14 Routines

ct_bind Open Client Release 10.0

if (coldata == NULL)
{

ex_error("ex_fetch_data: malloc() failed");
return CS_MEM_ERROR;

}
datafmt = (CS_DATAFMT *)malloc(num_cols *

sizeof (CS_DATAFMT));
if (datafmt == NULL)
{

ex_error("ex_fetch_data: malloc() failed");
free(coldata);
return CS_MEM_ERROR;

}

/*
** Loop through the columns, getting a description of each
** one and binding each one to a program variable.
**
** We're going to bind each column to a character string;
** this will show how conversions from server native
** datatypes to strings can occur via bind.
**
** We're going to use the same datafmt structure for both
** the describe and the subsequent bind.
**
** If an error occurs within the for loop, a break is used
** to get out of the loop and the data that was allocated
** is freed before returning.
*/
for (i = 0; i < num_cols; i++)
{

/*
** Get the column description. ct_describe() fills
** the datafmt parameter with a description of the
** column.
*/
retcode = ct_describe(cmd, (i + 1), &datafmt[i]);
if (retcode != CS_SUCCEED)
{

ex_error("ex_fetch_data: ct_describe() failed");
break;

}

Client-Library/C Reference Manual 3-15

Open Client Release 10.0 ct_bind

/*
** Update the datafmt structure to indicate that we
** want the results in a null terminated character
** string.
**
** First, update datafmt.maxlength to contain the
** maximum possible length of the column. To do this,
** call ex_display_len() to determine the number of
** bytes needed for the character string
** representation, given the datatype described
** above. Add one for the null termination character.
*/
datafmt[i].maxlength = ex_display_dlen(&datafmt[i])

 + 1;

/*
** Set datatype and format to tell bind we want things
** converted to null terminated strings.
*/
datafmt[i].datatype = CS_CHAR_TYPE;
datafmt[i].format = CS_FMT_NULLTERM;

/*
** Allocate memory for the column string
*/
coldata[i].value = (CS_CHAR *)malloc

(datafmt[i].maxlength);
if (coldata[i].value == NULL)
{

ex_error("ex_fetch_data: malloc() failed");
retcode = CS_MEM_ERROR;
break;

}

/* Now bind. */
retcode = ct_bind (cmd, (i + 1), &datafmt[i],

coldata[i].value, &coldata[i].valuelen,
&coldata[i].indicator);

if (retcode != CS_SUCCEED)
{

ex_error("ex_fetch_data: ct_bind() failed");
break;

}
}

This code excerpt is from the exutils.c example program.For further
examples of using ct_bind, see the compute.c, ex_alib.c, getsend.c, and
i18n.c example programs.

See Also

ct_describe, ct_fetch, ct_res_info, ct_results, Types

3-16 Routines

ct_br_column Open Client Release 10.0

ct_br_column

Function

Retrieve information about a column generated by a browse-mode
select.

Syntax

CS_RETCODE ct_br_column(cmd, colnum, browsedesc)

CS_COMMAND *cmd;
CS_INT colnum;
CS_BROWSEDESC *browsedesc;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

colnum – The number of the column to describe. The first column in a
select statement’s select-list is column number 1, the second is
number 2, and so forth.

browsedesc – A pointer to a CS_BROWSEDESC structure. ct_br_column fills
this structure with information about the column specified by
colnum.

For information on the CS_BROWSEDESC structure, see the
CS_BROWSEDESC topics page.

Returns

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

ct_br_column returns CS_FAIL if the current result set
was not generated by a select...for browse.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-4: Return values (ct_br_column)

Client-Library/C Reference Manual 3-17

Open Client Release 10.0 ct_br_column

Comments

• ct_br_column fills *browsedesc with information about the column
specified by colnum.

• A column can be updated through browse mode only if it meets
three conditions:

- It belongs to a browsable table.

- It is the result of a select...for browse.

- It is not the result of a SQL expression, such as max(colname).

• It is an error to call ct_br_column if browse-mode information is not
available. Generally, browse mode information is available if the
current result set is a CS_ROW_RESULT result set that was generated
by a select...for browse.

Before calling ct_br_column, an application can call ct_res_info with
type as CS_BROWSE_INFO to check whether browse mode infor-
mation is available.

• See the Browse Mode topics page for more information on browse
mode.

See Also

Browse Mode, ct_br_table

3-18 Routines

ct_br_table Open Client Release 10.0

ct_br_table

Function

Return information about browse mode tables.

Syntax

CS_RETCODE ct_br_table(cmd, tabnum, type,
buffer, buflen, outlen)

CS_COMMAND *cmd;
CS_INT tabnum;
CS_INT type;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

tabnum – The number of the table of interest. The first table in a select
statement’s from-list is table number 1, the second number 2, and so
forth.

type – The type of information to return. The following table lists the
symbolic values that are legal for type:

Value of type: ct_br_table returns: *buffer set to:

CS_ISBROWSE Whether or not the table is
browsable. A table is browsable
if it has a unique index and a
timestamp column.

CS_TRUE or
CS_FALSE.

CS_TABNAME The name of the table whose
number is tabnum.

A string value.

CS_TABNUM The number of tables named in
the browse-mode select.

If type is CS_TABNUM, pass
tabnum as CS_UNUSED.

An integer value.

Table 3-5: Values for type (ct_br_table)

Client-Library/C Reference Manual 3-19

Open Client Release 10.0 ct_br_table

buffer – A pointer to the space in which ct_br_table will place the
requested information.

buflen – The length, in bytes, of the *buffer data space.

If type is CS_ISBROWSE or CS_TABNUM, pass buflen as CS_UNUSED.

outlen – A pointer to an integer variable.

If supplied, ct_br_table sets *outlen to the length, in bytes, of the
requested information.

If the requested information is larger than buflen bytes, an appli-
cation can use the value of *outlen to determine how many bytes
are needed to hold the information.

Returns

Comments

• ct_br_table returns either the number of tables named in the select
statement or information about a particular table.

• A table is browsable if it has a unique index and a timestamp
column.

• It is an error to call ct_br_table if browse-mode information is not
available. Generally, browse mode information is available if the
current result set is a CS_ROW_RESULT result set that was generated
by a select...for browse.

• Before calling ct_br_table, an application can call ct_res_info with type
as CS_BROWSE_INFO to check whether browse mode information is
available.

• For more information on browse mode, see the Browse Mode topics
page.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

ct_br_table returns CS_FAIL if the current result set
was not generated by a select...for browse.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-6: Return values (ct_br_table)

3-20 Routines

ct_br_table Open Client Release 10.0

See Also

Browse Mode, ct_br_column

Client-Library/C Reference Manual 3-21

Open Client Release 10.0 ct_callback

ct_callback

Function

Install or retrieve a Client-Library callback routine.

Syntax

CS_RETCODE ct_callback(context, connection,
action, type, func)

CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_INT action;
CS_INT type;
CS_VOID *func;

Parameters

context – A pointer to a CS_CONTEXT structure. A CS_CONTEXT
structure defines a Client-Library application context.

Either context or connection must be NULL:

- If context is supplied, the callback is installed as a “default”
callback for the specified context. Once installed, a default
callback is inherited by all connections subsequently allocated
within the context.

- If context is NULL, the callback is installed for the individual
connection specified by connection.

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

Either context or connection must be NULL:

- If connection is supplied, the callback is installed for the specified
connection.

- If connection is NULL, the callback is installed for the application
context specified by context.

3-22 Routines

ct_callback Open Client Release 10.0

action – One of the following symbolic values:

type – The type of callback routine of interest. The following table lists
the symbolic values that are legal for type:

func – A pointer variable.

If a callback routine is being installed, func is the address of the
callback routine to install.

If a callback routine is being retrieved, ct_callback sets *func to the
address of the currently-installed callback routine.

Value of action: ct_callback:

CS_SET Installs a callback.

CS_GET Retrieves the currently-installed callback of this
type.

Table 3-7: Values for action (ct_callback)

Value of type: ct_callback installs:

CS_CLIENTMSG_CB A client message callback.

CS_COMPLETION_CB A completion callback.

CS_ENCRYPT_CB An encryption callback.

CS_MESSAGE_CB A message callback.

CS_CHALLENGE_CB A negotiation callback.

CS_SERVERMSG_CB A server message callback.

CS_NOTIF_CB A registered procedure notification callback.

CS_SIGNAL_CB +
signal_number

A signal callback.

Signal callbacks are identified by adding the
signal number of interest to the manifest
constant CS_SIGNAL_CB. For example, to
install a signal callback for a SIGALRM signal,
pass type as CS_SIGNAL_CB + SIGALRM.

Table 3-8: Values for type (ct_callback)

Client-Library/C Reference Manual 3-23

Open Client Release 10.0 ct_callback

Returns

Comments

• A typical application will use ct_callback only to install callback
routines. However, some applications may need to retrieve
previously-installed callbacks.

• To install a callback routine, an application calls ct_callback with
action as CS_SET and func as the address of the callback to install.

• To retrieve the address of a previously-installed callback, an
application calls ct_callback with action as CS_GET and func as a
pointer to a pointer. In this case, ct_callback sets *func to the address
of the current callback of the specified type. An application can
save this address for re-use at a later time. Note that retrieving the
address of a callback does not de-install it.

• ct_callback can be used to install a callback routine either for a
context or for a particular connection. To install a callback for a
context, pass connection as NULL. To install a callback for a
connection, pass context as NULL.

• When a context is allocated, it has no callback routines installed.
An application must specifically install any callbacks that are
required.

• When a connection is allocated, it picks up default callback
routines from its parent context. An application can override these
default callbacks by calling ct_callback to install new callbacks at the
connection level.

• To de-install an existing callback routine, an application can call
ct_callback with func as NULL. An application can also install a new
callback routine at any time. The new callback will automatically
replace any existing callback.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the Asynchronous
Programming topics page.

Table 3-9: Return values (ct_callback)

3-24 Routines

ct_callback Open Client Release 10.0

• For most types of callbacks, if no callback of a particular type is
installed for a connection, Client-Library discards callback
information of that type.

The client message callback is an exception to this rule. When an
error or informational message is generated for a connection that
has no client message callback installed, Client-Library calls the
connection’s parent context’s client message callback (if any)
rather than discarding the message. If the context has no client
message callback installed, then the message is discarded.

• A connection picks up its parent context’s callback routines only
once, when it is allocated. This has two important implications:

- Existing connections are not affected by changes to their parent
context’s callback routines.

- If a callback routine of a particular type is de-installed for a
connection, the connection does not pick up its parent context’s
callback routine. Instead, the connection is considered to have no
callback routine of this type installed.

• An application can use the CS_USERDATA property to transfer
information between a callback routine and the program code that
triggered it. The CS_USERDATA property allows an application to
save user data in internal Client-Library space and retrieve it later.

• For information on how to declare specific types of callback
routines, see the Callbacks topics page.

Example

/*
** Install message and completion handlers.
*/
retstat = ct_callback (Ex_context, NULL, CS_SET,

CS_CLIENTMSG_CB,(CS_VOID *)ex_clientmsg_cb);
if (retstat != CS_SUCCEED)
{

ex_panic("ct_callback failed");
}
retstat = ct_callback (Ex_context, NULL, CS_SET,

CS_SERVERMSG_CB,(CS_VOID *)ex_servermsg_cb);
if (retstat != CS_SUCCEED)
{

ex_panic("ct_callback failed");
}

Client-Library/C Reference Manual 3-25

Open Client Release 10.0 ct_callback

retstat = ct_callback (Ex_context, NULL, CS_SET,
CS_COMPLETION_CB,(CS_VOID *)CompletionCB);

if (retstat != CS_SUCCEED)
{

ex_panic("ct_callback failed");
}

This code excerpt is from the ex_amain.c example program. For further
examples of using ct_callback, see the ex_alib.c and exutils.c example
programs.

See Also

Callbacks, ct_capability, ct_config, ct_con_props, ct_connect

3-26 Routines

ct_cancel Open Client Release 10.0

ct_cancel

Function

Cancel a command or the results of a command.

Syntax

CS_RETCODE ct_cancel(connection, cmd, type)

CS_CONNECTION *connection;
CS_COMMAND *cmd;
CS_INT type;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

For CS_CANCEL_CURRENT cancels, connection must be NULL.

For CS_CANCEL_ATTN and CS_CANCEL_ALL cancels, one of
connection or cmd must be NULL. If connection is supplied and cmd
is NULL, the cancel operation applies to all commands pending
for this connection.

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

For CS_CANCEL_CURRENT cancels, cmd must be supplied. The
cancel operation applies only to the results pending for this
command structure.

For CS_CANCEL_ATTN and CS_CANCEL_ALL cancels, if cmd is
supplied and connection is NULL, the cancel operation applies
only to the command pending for this command structure. If
cmd is NULL and connection is supplied, the cancel operation
applies to all commands pending for this connection.

Client-Library/C Reference Manual 3-27

Open Client Release 10.0 ct_cancel

type – The type of cancel. The following table lists the symbolic values
that are legal for type:

Returns

Value of type: Behavior of ct_cancel: Notes:

CS_CANCEL_ALL ct_cancel sends an attention to the server,
instructing it to cancel the current
command.

Client-Library immediately discards all
results generated by the command.

Causes this connection’s
cursors to enter an undefined
state.

To determine the state of a
cursor, an application can call
ct_cmd_props with property as
CS_CUR_STATUS.

CS_CANCEL_ATTN ct_cancel sends an attention to the server,
instructing it to cancel the current
command.

The next time the application reads from
the server, Client-Library discards all
results generated by the canceled
command.

Causes this connection’s
cursors to enter an undefined
state.

To determine the state of a
cursor, an application can call
ct_cmd_props with property as
CS_CUR_STATUS.

CS_CANCEL_CURRENT ct_cancel discards the current result set. Safe to use on connections
with open cursors.

Table 3-10: Values for type (ct_cancel)

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the Asynchronous Programming topics
page.

CS_CANCELED The cancel operation was canceled. Only a
CS_CANCEL_CURRENT type of cancel can be
canceled.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

CS_TRYING A cancel operation is already pending for this
connection.

Table 3-11: Return values (ct_cancel)

3-28 Routines

ct_cancel Open Client Release 10.0

Comments

• Canceling a command is equivalent to sending an attention to the
server, instructing it to halt execution of the current command.
When a command is canceled, any results generated by it are no
longer available to an application.

• Canceling results is equivalent to discarding a buffer’s worth of
results. Once results are canceled, they are no longer available to an
application. If the result set has not been completely processed,
subsequent results remain available.

Canceling a Command

• To cancel the current command and all results generated by it, an
application calls ct_cancel with type as CS_CANCEL_ATTN or
CS_CANCEL_ALL. Both of these calls tell Client-Library to:

- Send an attention to the server, instructing it to halt execution of
the current command.

- Discard any results already generated by the command.

• Both types of cancels return CS_SUCCEED immediately, without
sending an attention to the server, if no command is in progress.

• If an application has not yet called ct_send to send an initiated
command or command batch:

- A CS_CANCEL_ALL cancel discards the initiated command or
command batch without sending an attention to the server. A
CS_CANCEL_ATTN cancel has no effect.

• A connection can become unusable due to error. If this occurs,
Client-Library marks the connection as “dead.” An application can
use the CS_CON_STATUS property to determine if a connection has
been marked dead.

If a connection has been marked dead because of a results-
processing error, an application can try calling
ct_cancel(CS_CANCEL_ALL or CS_CANCEL_ATTN) to “revive” the
connection. If this fails, the application must close the connection
and drop its CS_CONNECTION structure.

• The difference between CS_CANCEL_ALL and CS_CANCEL_ATTN is:

- CS_CANCEL_ALL causes Client-Library to immediately discard
the canceled command’s results (if any).

Client-Library/C Reference Manual 3-29

Open Client Release 10.0 ct_cancel

- CS_CANCEL_ATTN causes Client-Library to wait until the
application attempts to read from the server before discarding
the results.

This difference is important because Client-Library must read
from the result stream in order to discard results, and it is not
always safe to read from the result stream.

It is not safe to read from the result stream from within callbacks
or interrupt handlers, or when an asynchronous routine is
pending. It is safe to read from the result stream anytime an
application is running in its main-line code, except when an
asynchronous operation is pending.

Use CS_CANCEL_ATTN from within callbacks or interrupt
handlers, or when an asynchronous operation is pending.

Use CS_CANCEL_ALL in main-line code, except when an
asynchronous operation is pending.

• CS_CANCEL_ALL leaves the command structure in a “clean” state,
available for use in another operation. When a command is
canceled with CS_CANCEL_ATTN, however, the command structure
cannot be reused until a Client-Library routine returns
CS_CANCELED.

The Client-Library routines that can return CS_CANCELED are:

- ct_cancel(CS_CANCEL_CURRENT)

- ct_fetch

- ct_get_data

- ct_options

- ct_recvpassthru

- ct_results

- ct_send

- ct_sendpassthru

• CS_CANCEL_ATTN has two primary uses:

- To cancel commands from within an application’s interrupt
handlers or callback routines.

- In asynchronous applications, to cancel pending calls to the
result-processing routines ct_results and ct_fetch.

3-30 Routines

ct_cancel Open Client Release 10.0

• Canceling commands on a connection that has an open cursor may
affect the state of the cursor in unexpected ways. For this reason, it
is recommended that the CS_CANCEL_ALL and CS_CANCEL_ATTN
types of cancels not be used on connections with open cursors.
Instead of canceling a cursor command, an application can simply
close the cursor.

Canceling Current Results

• To cancel current results, an application calls ct_cancel with type as
CS_CANCEL_CURRENT. This tells Client-Library to discard the
current results; it is equivalent to calling ct_fetch until it returns
CS_END_DATA.

• The next buffer’s worth of results, if any, remains available to the
application, and the current command is not affected.

• Canceling results clears the bindings between the result items and
program variables.

• A CS_CANCEL_CURRENT type of cancel is legal for all types of result
sets, even those that contain no fetchable results. If a result set
contains no fetchable results, a cancel has no effect.

Example

if (query_code == CS_FAIL)
{

/*
** Terminate results processing and break out of
** the results loop.
*/
retcode = ct_cancel (NULL, cmd, CS_CANCEL_ALL);
if (retcode != CS_SUCCEED)
{

ex_error("ex_execute_cmd: ct_cancel() failed");
}
break;

}

This code excerpt is from the exutils.c example program. For further
examples of using ct_cancel, see the ex_alib.c, ex_amain.c, and getsend.c
example programs.

See Also

ct_fetch, ct_results

Client-Library/C Reference Manual 3-31

Open Client Release 10.0 ct_capability

ct_capability

Function

Set or retrieve a client/server capability.

Syntax

CS_RETCODE ct_capability(connection, action, type,
capability, value)

CS_CONNECTION *connection;
CS_INT action;
CS_INT type;
CS_INT capability;
CS_VOID *value;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

action – One of the following symbolic values:

type – The type category of the capability. The following table lists the
symbolic values that are legal for type:

Value of action: ct_capability:

CS_SET Sets a capability.

CS_GET Retrieves a capability.

Table 3-12: Values for action (ct_capability)

Value of type: What it means:

CS_CAP_REQUEST Request capabilities.

These capabilities describe the types of requests
that a connection can support.

Request capabilities are retrieve-only.

Table 3-13: Values for type (ct_capability)

3-32 Routines

ct_capability Open Client Release 10.0

capability – The capability of interest. The following two tables list the
symbolic values that are legal for capability:

➤ Note
In addition to the values listed in the tables, capability can have the special

value CS_ALL_CAPS, to indicate that an application is setting or retrieving all

response or request capabilities simultaneously. CS_ALL_CAPS is primarily of

use in gateway applications. A typical Client-Library application will only need

to set or retrieve a small number of capabilities.

CS_CAP_REQUEST Capabilities

CS_CAP_RESPONSE Response capabilities.

These capabilities describe the types of responses
that a server can send to a connection.

An application can set response capabilities before
a connection is open and can retrieve response
capabilities at any time.

CS_CAP_REQUEST Capability: Meaning: Capability
relates to:

CS_CON_INBAND In-band (non-expedited) attentions. Connections

CS_CON_OOB Out-of-band (expedited) attentions. Connections

CS_CSR_ABS Fetch of specified absolute cursor row. Cursors

CS_CSR_FIRST Fetch of first cursor row. Cursors

CS_CSR_LAST Fetch of last cursor row. Cursors

CS_CSR_MULTI Multi-row cursor fetch. Cursors

CS_CSR_PREV Fetch previous cursor row. Cursors

CS_CSR_REL Fetch specified relative cursor row. Cursors

CS_DATA_BIN Binary datatype. Datatypes

CS_DATA_VBIN Variable-length binary type. Datatypes

Table 3-14: Request capabilities

Value of type: What it means:

Table 3-13: Values for type (ct_capability) (continued)

Client-Library/C Reference Manual 3-33

Open Client Release 10.0 ct_capability

CS_DATA_LBIN Long binary datatype. Datatypes

CS_DATA_BIT Bit datatype. Datatypes

CS_DATA_BITN Nullable bit values. Datatypes

CS_DATA_BOUNDARY Secure Server boundary datatypes. Datatypes

CS_DATA_CHAR Character datatype. Datatypes

CS_DATA_VCHAR Variable-length character datatype. Datatypes

CS_DATA_LCHAR Long character datatype. Datatypes

CS_DATA_DATE4 Short datetime datatype. Datatypes

CS_DATA_DATE8 Datetime datatype. Datatypes

CS_DATA_DATETIMEN NULL datetime values. Datatypes

CS_DATA_DEC Decimal datatype. Datatypes

CS_DATA_FLT4 4-byte float datatype. Datatypes

CS_DATA_FLT8 8-byte float datatype. Datatypes

CS_DATA_FLTN Nullable float values. Datatypes

CS_DATA_IMAGE Image datatype. Datatypes

CS_DATA_INT1 Tiny integer datatype. Datatypes

CS_DATA_INT2 Small integer datatype. Datatypes

CS_DATA_INT4 Integer datatype. Datatypes

CS_DATA_INTN NULL integers. Datatypes

CS_DATA_MNY4 Short money datatype. Datatypes

CS_DATA_MNY8 Money datatype. Datatypes

CS_DATA_MONEYN NULL money values. Datatypes

CS_DATA_NUM Numeric datatype. Datatypes

CS_DATA_SENSITIVITY Secure Server sensitivity datatypes. Datatypes

CS_DATA_TEXT Text datatype. Datatypes

CS_OPTION_GET Whether the client can get current
option values from the server.

Options

CS_PROTO_BULK Tokenized bulk copy. Bulk copy

CS_PROTO_DYNAMIC Descriptions for prepared statements
come back at prepare time.

Dynamic SQL

CS_CAP_REQUEST Capability: Meaning: Capability
relates to:

Table 3-14: Request capabilities (continued)

3-34 Routines

ct_capability Open Client Release 10.0

CS_CAP_RESPONSE Capabilities

CS_PROTO_DYNPROC Client-Library prepends SQL to a
Dynamic SQL prepare statement.

Dynamic SQL

CS_REQ_BCP Bulk copy requests. Commands

CS_REQ_CURSOR Cursor requests. Commands

CS_REQ_DYN Dynamic SQL requests. Commands

CS_REQ_LANG Language requests. Commands

CS_REQ_MSG Message commands. Commands

CS_REQ_MSTMT Multiple server commands per Client-
Library language command.

Commands

CS_REQ_NOTIF Registered procedure notifications. Commands

CS_REQ_PARAM Use PARAM/PARAMFMT TDS
streams for requests.

Commands

CS_REQ_URGNOTIF Send notifications with the “urgent” bit
set in the TDS packet header.

Registered
procedures

CS_REQ_RPC Remote procedure requests. Commands

CS_CAP_RESPONSE Capability: Meaning: Capability
relates to:

CS_CON_NOINBAND No in-band (non-expedited) attentions. Connections

CS_CON_NOOOB No out-of-band (expedited) attentions. Connections

CS_DATA_NOBIN No binary datatype. Datatypes

CS_DATA_NOVBIN No variable-length binary type. Datatypes

CS_DATA_NOLBIN No long binary datatype. Datatypes

CS_DATA_NOBIT No bit datatype. Datatypes

CS_DATA_NOBOUNDARY No Secure Server boundary datatypes. Datatypes

CS_DATA_NOCHAR No character datatype. Datatypes

CS_DATA_NOVCHAR No variable-length character datatype. Datatypes

CS_DATA_NOLCHAR No long character datatype. Datatypes

Table 3-15: Response capabilities

CS_CAP_REQUEST Capability: Meaning: Capability
relates to:

Table 3-14: Request capabilities (continued)

Client-Library/C Reference Manual 3-35

Open Client Release 10.0 ct_capability

value – If a capability is being set, value points to a CS_BOOL variable
that has the value CS_TRUE or CS_FALSE.

If a capability is being retrieved, value points to a CS_BOOL-sized
variable which ct_capability sets to CS_TRUE or CS_FALSE.

CS_DATA_NODATE4 No short datetime datatype. Datatypes

CS_DATA_NODATE8 No datetime datatype. Datatypes

CS_DATA_NODATETIMEN No NULL datetime values. Datatypes

CS_DATA_NODEC No decimal datatype. Datatypes

CS_DATA_NOFLT4 No 4-byte float datatype. Datatypes

CS_DATA_NOFLT8 No 8-byte float datatype. Datatypes

CS_DATA_NOIMAGE No image datatype. Datatypes

CS_DATA_NOINT1 No tiny integer datatype. Datatypes

CS_DATA_NOINT2 No small integer datatype. Datatypes

CS_DATA_NOINT4 No integer datatype. Datatypes

CS_DATA_NOINT8 No 8-byte integer datatype. Datatypes

CS_DATA_NOINTN No NULL integers. Datatypes

CS_DATA_NOMNY4 No short money datatype. Datatypes

CS_DATA_NOMNY8 No money datatype. Datatypes

CS_DATA_NOMONEYN No NULL money values. Datatypes

CS_DATA_NONUM No numeric datatype. Datatypes

CS_DATA_NOSENSITIVITY No Secure Server sensitivity datatypes. Datatypes

CS_DATA_NOTEXT No text datatype. Datatypes

CS_RES_NOEED No extended error results. Results

CS_RES_NOMSG No message results. Results

CS_RES_NOPARAM Don’t use PARAM/PARAMFMT TDS
streams for RPC results.

Results

CS_RES_NOSTRIPBLANKS The server shouldn’t strip blanks when
returning data from nullable fixed-
length character columns.

Results

CS_RES_NOTDSDEBUG No TDS debug token in response to
certain dbcc commands.

Results

CS_CAP_RESPONSE Capability: Meaning: Capability
relates to:

Table 3-15: Response capabilities (continued)

3-36 Routines

ct_capability Open Client Release 10.0

CS_TRUE indicates that a capability is enabled. For example, if the
CS_RES_NOEED capability is set to CS_TRUE, no extended error
data will be returned on the connection.

➤ Note
If capability is CS_ALL_CAPS, value must point to a CS_CAP_TYPE structure.

Returns

Comments

• Capabilities describe client/server features that a connection
supports.

• There are two types of capabilities: CS_CAP_RESPONSE capabilities,
also called “response capabilities,” and CS_CAP_REQUEST
capabilities, also called “request capabilities.”

- An application uses request capabilities to determine what kinds
of requests a server connection supports. For example, an
application can retrieve the CS_REQ_CURSOR capability to find out
whether a connection supports cursor requests.

- An application uses response capabilities to prevent the server
from sending a type of response that the application cannot
process. For example, an application can prevent a server from
sending NULL money values by setting the CS_DATA_NOMONEYN
response capability to CS_TRUE.

• Before a connection is open, an application can:

- Retrieve request or response capabilities, to determine what
request and response features are normally supported at the
application’s current TDS (Tabular Data Stream) version level.
An application’s TDS level defaults to a value based on the
CS_VERSION level that the application requested in its call to ct_init.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-16: Return values (ct_capability)

Client-Library/C Reference Manual 3-37

Open Client Release 10.0 ct_capability

- Set response capabilities, to indicate that a connection does not
wish to receive particular types of server responses. Note that an
application cannot set request capabilities, which are retrieve-
only.

• After a connection is open, an application can:

- Retrieve request capabilities to find out what types of requests
the connection will support.

- Retrieve response capabilities to find out whether the server has
agreed to withhold the previously-indicated response types from
the connection.

• Capabilities are determined by a connection’s TDS version level.
Not all TDS versions support the same capabilities. For example,
4.0 TDS does not support registered procedure notifications or
cursor requests. 4.0 TDS does, however, support bulk copy
requests, remote procedure call requests, row results, and compute
row results. A connection’s TDS version level is negotiated during
the connection process.

• If an application sets the CS_TDS_VERSION property, Client-Library
overwrites existing capability values with default capability values
corresponding to the new TDS version. For this reason, an
application should set CS_TDS_VERSION before setting any
capabilities for a connection.

Because CS_TDS_VERSION is a negotiated login property, the
server can change its value at connection time. If this occurs,
Client-Library will overwrite existing capability values with
default capability values corresponding to the new TDS version.

• Because capability values can change at connection time, an
application must call ct_capability after a connection is open in order
to determine what capability values are in effect for the connection.

• When a connection is closed, Client-Library resets its capability
values to values corresponding to the application’s default TDS
version.

Setting and Retrieving Multiple Capabilities

• Gateway applications often need to set or retrieve all capabilities of
a type category with a single call to ct_capability. To do this, an
application calls ct_capability with:

- type as the type category of interest

- capability as CS_ALL_CAPS

3-38 Routines

ct_capability Open Client Release 10.0

- value as a CS_CAP_TYPE structure

• Client-Library provides the following macros to enable an
application to set, clear, and test bits in a CS_CAP_TYPE structure:

- CS_SET_CAPMASK(mask, capability)

- CS_CLR_CAPMASK(mask, capability)

- CS_TST_CAPMASK(mask, capability)

where mask is a pointer to a CS_CAP_TYPE structure and capability
is the capability of interest.

See Also

Capabilities, ct_con_props, ct_connect, ct_options, Properties

Client-Library/C Reference Manual 3-39

Open Client Release 10.0 ct_close

ct_close

Function

Close a server connection.

Syntax

CS_RETCODE ct_close(connection, option)

CS_CONNECTION *connection;
CS_INT option;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

option – The option, if any, to use for the close. The following table lists
the symbolic values that are legal for option:

Value of option: What it means:

CS_UNUSED

(10.0+ servers only)

Default behavior.

ct_close sends a logout message to the server and
reads the response to this message before closing the
connection.

If the connection has results pending, ct_close returns
CS_FAIL.

CS_FORCE_CLOSE The connection is closed whether or not results are
pending, and without notifying the server.

This option is primarily for use when an application is
hung waiting for a server response. It is also useful if
ct_results, ct_fetch, or ct_cancel returns CS_FAIL.

Table 3-17: Values for option (ct_close)

3-40 Routines

ct_close Open Client Release 10.0

Returns

The most common reason for a ct_close(CS_UNUSED) failure is pending
results on the connection.

Comments

• To de-allocate a CS_CONNECTION, an application can call ct_con_drop
after the connection has been successfully closed.

• A connection can become unusable due to error. If this occurs,
Client-Library marks the connection as “dead.” An application can
use the CS_CON_STATUS property to determine if a connection has
been marked dead.

If a connection has been marked dead, an application must call
ct_close(CS_FORCE_CLOSE) to close the connection and ct_con_drop
to drop its CS_CONNECTION structure.

An exception to this rule occurs for certain types of results-
processing errors. If a connection is marked dead while
processing results, the application can try calling
ct_cancel(CS_CANCEL_ALL or CS_CANCEL_ATTN) to “revive” the
connection. If this fails, the application must close the connection
and drop its CS_CONNECTION structure.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the Asynchronous Programming topics
page.

If asynchronous network I/O is in effect and ct_close
is called with option as CS_FORCE_CLOSE, it returns
CS_SUCCEED or CS_FAIL immediately to indicate
the network response. In this case, no completion
callback event occurs.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Note that ct_close does not return CS_BUSY when
called with option as CS_FORCE_CLOSE.

Table 3-18: Return values (ct_close)

Client-Library/C Reference Manual 3-41

Open Client Release 10.0 ct_close

• When a connection is closed, all open cursors on that connection
are automatically closed.

• If the connection is using asynchronous network I/O, ct_close
returns CS_PENDING. When the server response arrives, Client-
Library closes the connection and then calls the completion
callback installed for the connection, if any.

• The behavior of ct_close depends on the value of option, which
determines the type of close. Each section below contains
information on a type of close.

Default Close Behavior

• If the connection has any pending results, ct_close returns CS_FAIL.
If the connection has an open cursor, the server closes the cursor
when Client-Library closes the connection.

• When connected to a 10.0+ server, ct_close sends a logout message
to the server and reads the response to this message before
terminating the connection. The contents of this message do not
affect ct_close’s behavior.

• An application cannot call ct_close(CS_UNUSED) when an
asynchronous operation is pending.

CS_FORCE_CLOSE Behavior

• The connection is closed whether or not it has an open cursor or
pending results.

• ct_close does not behave asynchronously when called with the
CS_FORCE_CLOSE option. When ct_close(CS_FORCE_CLOSE) is called
to close an asynchronous connection, it returns CS_SUCCEED or
CS_FAIL immediately, to indicate the network response. In this case,
no completion callback event occurs.

• CS_FORCE_CLOSE is useful when:

- A connection has been marked as dead.

- An application is hung, waiting for a server response.

- An application cannot call ct_close(CS_UNUSED) because results
are pending.

• Because no logout message is sent to the server, the server cannot
tell whether the close is intentional or whether it is the result of a
lost connection or crashed client.

3-42 Routines

ct_close Open Client Release 10.0

• An application can call ct_close(CS_FORCE_CLOSE) when an
asynchronous operation is pending.

Example

CS_RETCODE retcode;
CS_INT close_option;

close_option = (status != CS_SUCCEED) ? CS_FORCE_CLOSE :
CS_UNUSED;

retcode = ct_close (connection, close_option);
if (retcode != CS_SUCCEED)
{

ex_error("ex_con_cleanup: ct_close() failed");
return retcode;

}

This code excerpt is from the exutils.c example program. For another
example of using ct_close, see the ex_amain.c example program.

See Also

ct_callback, ct_con_drop, ct_connect, ct_con_props

Client-Library/C Reference Manual 3-43

Open Client Release 10.0 ct_cmd_alloc

ct_cmd_alloc

Function

Allocate a CS_COMMAND structure.

Syntax

CS_RETCODE ct_cmd_alloc(connection, cmd_pointer)

CS_CONNECTION *connection;
CS_COMMAND **cmd_pointer;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

cmd_pointer – The address of a pointer variable. ct_cmd_alloc sets
*cmd_pointer to the address of a newly-allocated CS_COMMAND
structure.

In case of error, ct_cmd_alloc sets *cmd_pointer to NULL.

Returns

The most common reason for a ct_cmd_alloc failure is a lack of adequate
memory.

Comments

• A CS_COMMAND structure, also called a “command structure,” is a
control structure that a Client-Library application uses to send
commands to a server and process the results of those commands.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-19: Return values (ct_cmd_alloc)

3-44 Routines

ct_cmd_alloc Open Client Release 10.0

• An application must call ct_con_alloc to allocate a connection
structure before calling ct_cmd_alloc to allocate command structures
for the connection.

However, it is not necessary that the connection structure
represent an open connection. (An application opens a
connection by calling ct_connect to connect to a server.)

Example

/* Allocate a command handle to send the text with */
if ((retcode = ct_cmd_alloc (connection, &cmd)) !=

CS_SUCCEED)
{

ex_error("UpdateTextData: ct_cmd_alloc() failed");
return retcode;

}

This code excerpt is from the getsend.c example program. For further
examples of using ct_cmd_alloc, see the compute.c, csr_disp.c, ex_alib.c,
exutils.c, i18n.c, and rpc.c example programs.

See Also

ct_command, ct_cmd_drop, ct_cmd_props, ct_con_alloc, ct_cursor, ct_dynamic

Client-Library/C Reference Manual 3-45

Open Client Release 10.0 ct_cmd_drop

ct_cmd_drop

Function

De-allocate a CS_COMMAND structure.

Syntax

CS_RETCODE ct_cmd_drop(cmd)

CS_COMMAND *cmd;

Parameters

cmd – A pointer to a CS_COMMAND structure.

Returns

ct_cmd_drop returns CS_FAIL if:

- *cmd has an active command. A command that has been
initialized but not yet sent is considered to be active.

- *cmd has an open cursor.

- *cmd has pending results.

Comments

• A CS_COMMAND structure is a control structure that a Client-
Library application uses to send commands to a server and process
the results of those commands.

• Once a command structure has been de-allocated, it cannot be re-
used. To allocate a new CS_COMMAND structure, an application can
call ct_cmd_alloc.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-20: Return values (ct_cmd_drop)

3-46 Routines

ct_cmd_drop Open Client Release 10.0

• Before de-allocating a command structure, an application should
cancel any active commands, process or cancel any pending
results, and close and de-allocate any open cursors on the
command structure.

Example

if ((retcode = ct_cmd_drop (cmd)) != CS_SUCCEED)
{

ex_error("DoCompute: ct_cmd_drop() failed");
return retcode;

}

This code excerpt is from the compute.c example program. For further
examples of using ct_cmd_drop, see the csr_disp.c, ex_alib.c, exutils.c, and
i18n.c example programs.

See Also

ct_command, ct_cmd_alloc

Client-Library/C Reference Manual 3-47

Open Client Release 10.0 ct_cmd_props

ct_cmd_props

Function

Set or retrieve command structure properties.

Syntax

CS_RETCODE ct_cmd_props(cmd, action, property, buffer,
buflen, outlen)

CS_COMMAND *cmd;
CS_INT action;
CS_INT property;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

action – One of the following symbolic values:

property – The symbolic name of the property whose value is being set
or retrieved. The Properties topics page lists Client-Library
properties.

buffer – If a property value is being set, buffer points to the value to use
in setting the property.

If a property value is being retrieved, buffer points to the space in
which ct_cmd_props will place the requested information.

buflen – Generally, buflen is the length, in bytes, of *buffer.

Value of action: ct_cmd_props:

CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to its
Client-Library default value.

Table 3-21: Values for action (ct_cmd_props)

3-48 Routines

ct_cmd_props Open Client Release 10.0

If a property value is being set and the value in *buffer is null-termi-
nated, pass buflen as CS_NULLTERM.

If *buffer is a fixed-length or symbolic value, pass buflen as
CS_UNUSED.

outlen – A pointer to an integer variable.

outlen is not used if a property value is being set and should be
passed as NULL.

If a property value is being retrieved and outlen is supplied,
ct_cmd_props sets *outlen to the length, in bytes, of the requested
information.

If the information is larger than buflen bytes, an application can use
the value of *outlen to determine how many bytes are needed to
hold the information.

Summary of Parameters

For information on action, buffer, buflen, and outlen, see ‘‘action, buffer,
buflen, and outlen’’ on page 2-125.

Returns

Comments

• Command structure properties affect the behavior of an
application at the command structure level.

• All command structures allocated for a connection pick up default
property values from the parent connection. An application can
override these default values by calling ct_cmd_props.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-22: Return values (ct_cmd_props)

Client-Library/C Reference Manual 3-49

Open Client Release 10.0 ct_cmd_props

If an application changes connection property values after
allocating command structures for the connection, the existing
command structures will not pick up the new property values.
New command structures allocated for the connection will use
the new property values as defaults.

• See the Properties topics page for more information on properties.

• An application can use ct_cmd_props to set or retrieve the following
properties:

Property name: What it is: *buffer is:

Client-Library
can set or
retrieve at what
level?

Notes

CS_CUR_ID The cursor’s
identification
number.

Set to an integer
value.

Command. Retrieve only, after
CS_CUR_STATUS
indicates an
existing cursor.

CS_CUR_NAME The cursor’s name,
as defined in an
application’s
ct_cursor(CS_CUR
SOR_DECLARE)
call.

Set to a null-
terminated
character string.

Command. Retrieve only, after
ct_cursor(CS_CUR
SOR_DECLARE)
returns
CS_SUCCEED.

CS_CUR_
ROWCOUNT

The current value of
cursor rows. Cursor
rows is the number
of rows returned to
Client-Library per
internal fetch
request.

Set to an integer
value.

Command. Retrieve only, after
CS_CUR_STATUS
indicates an
existing cursor.

CS_CUR_STATUS The cursor’s status. Set to a CS_INT-
sized bit-mask.

Command. Retrieve only.

CS_HIDDEN_
KEYS

Whether or not to
expose hidden keys.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection,
command.

Cannot be set at
the command
level if results are
pending or a
cursor is open.

CS_PARENT_
HANDLE

The address of the
command
structure’s parent
connection.

Set to an address. Connection,
command.

Retrieve only.

Table 3-23: Client-Library properties

3-50 Routines

ct_cmd_props Open Client Release 10.0

Example

/*
** Extract the user area out of the command handle.
*/
retstat = ct_cmd_props (cmd, CS_GET, CS_USERDATA,

&ex_async, CS_SIZEOF(ex_async), NULL);
if (retstat != CS_SUCCEED)
{

return retstat;

}

This code excerpt is from the ex_alib.c example program. For another
example of using ct_cmd_props, see the rpc.c example programs.

See Also

ct_config, ct_cmd_alloc, ct_con_props, ct_res_info

CS_USERDATA User-allocated data. User-allocated
data.

Connection,
command.

To set
CS_USERDATA
at the context
level, call
cs_config.

None.

Property name: What it is: *buffer is:

Client-Library
can set or
retrieve at what
level?

Notes

Table 3-23: Client-Library properties (continued)

Client-Library/C Reference Manual 3-51

Open Client Release 10.0 ct_command

ct_command

Function

Initiate a language, package, RPC, message, or send-data command.

Syntax

CS_RETCODE ct_command(cmd, type, buffer, buflen,
option)

CS_COMMAND *cmd;
CS_INT type;
CS_VOID *buffer;
CS_INT buflen;
CS_INT option;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

type – The type of command to initiate. The table in the Summary of
Parameters section lists the symbolic values that are legal for type.

buffer – A pointer to data space.

buflen – The length, in bytes, of the *buffer data, or CS_UNUSED if *buffer
represents a fixed-length or symbolic value.

option – The option associated with this command, if any.

Currently, RPC (remote procedure call), send-data, and send-
bulk-data commands take options. For all other types of
commands, pass option as CS_UNUSED.

3-52 Routines

ct_command Open Client Release 10.0

The following table lists the symbolic values that are legal for
option:

type is: Value of option: Meaning:

CS_RPC_CMD CS_RECOMPILE Recompile the stored
procedure before
executing it.

CS_NORECOMPILE Do not recompile the
stored procedure before
executing it.

CS_UNUSED Equivalent to
CS_NORECOMPILE.

CS_SEND_DATA_CMD CS_COLUMN_DATA The data will be used for
a text or image column
update.

CS_BULK_DATA For internal Sybase use
only.
The data will be used for
a bulk copy operation.

CS_SEND_BULK_CMD CS_BULK_INIT For internal Sybase use
only.
Initialize a bulk copy
operation.

CS_BULK_CONT For internal Sybase use
only.
Continue a bulk copy
operation.

Table 3-24: Values for option (ct_command)

Client-Library/C Reference Manual 3-53

Open Client Release 10.0 ct_command

Summary of Parameters

Returns

Comments

• Initiating a command is the first step in sending it to a server.

• Sending a command to a server is a four step process. To send a
command to a server, an application must:

- Initiate the command by calling ct_command. This routine sets up
internal structures that are used in building a command stream
to send to the server.

Value of type: ct_command
initiates: buffer is: buflen is:

CS_LANG_CMD A language
command.

A pointer to the text of
the language command.

The length of the *buffer
data or CS_NULLTERM.

CS_MSG_CMD A message
command.

A pointer to a
CS_SMALLINT
representing the
message id.

CS_UNUSED

CS_PACKAGE_CMD A package
command.

A pointer to the name of
the package.

The length of the *buffer
data or CS_NULLTERM.

CS_RPC_CMD A remote procedure
call command.

A pointer to the name of
the remote procedure.

The length of the *buffer
data or CS_NULLTERM.

CS_SEND_DATA_CMD A send-data
command.

NULL CS_UNUSED

CS_SEND_BULK_CMD A SYBASE internal
send-bulk-data
command.

A pointer to the database
table name.

The length of the *buffer
data or CS_NULLTERM.

Table 3-25: Summary of parameters (ct_command)

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-26: Return values (ct_command)

3-54 Routines

ct_command Open Client Release 10.0

- Pass parameters for the command (if required) by calling ct_param
once for each parameter that the command requires.

Not all commands require parameters. For example, a remote
procedure call command may or may not require parameters,
depending on the stored procedure being called.

- Send the command to the server by calling ct_send.

- Verify the success of the command by calling ct_results.

This last step does not imply that an application need only call
ct_results once. An application needs to continue calling ct_results
until it no longer returns CS_SUCCEED. See the Open Client
Client-Library/C Programmer’s Guide for a discussion of
processing results.

• An application can call ct_cancel with type as CS_CANCEL_ALL to
clear a command that has been initiated but not yet sent.

• Within a single connection, the following rules apply to the use of
ct_command:

- After calling ct_command to initiate a command, an application
must either send the initiated command or clear it before calling
ct_command a second time.

- After sending a command initiated via ct_command, an application
must completely process or cancel all results generated by the
command before calling ct_command to initiate another command.

- An application cannot call ct_command to initiate a command on a
command structure that is managing a cursor.

• Each section below contains information on one of the types of
commands that ct_command can initiate.

Language Commands

• Language commands contain a character string that represents one
or more commands in a server’s own language. For example, the
following language command contains a Transact-SQL command:

ct_command(cmd, CS_LANG_CMD,
"select * from authors", CS_NULLTERM,
CS_UNUSED);

• The character string must represent one or more entire server
commands. Unlike DB-Library’s dbcmd routine, ct_command does
not append text to an internal buffer. If an application calls
ct_command twice in succession, the second ct_command call will fail.

Client-Library/C Reference Manual 3-55

Open Client Release 10.0 ct_command

• The character string can represent more than one server command.
For example, the following language command contains three
Transact-SQL commands:

ct_command(cmd, CS_LANG_CMD, “use pubs2 \
select * from titles \
select * from authors “, CS_NULLTERM,
CS_UNUSED);

• A language command can be in any language, so long as the server
to which it is directed can understand it. SQL Server understands
Transact-SQL, but an Open Server application constructed with
SYBASE Server-Library can be written to understand any
language.

• If the language command string contains host variables, an
application can pass values for these variable by calling ct_param
once for each variable that the language string contains.

• Transact-SQL command variables must begin with an ‘@’ symbol.

• A language cursor generates a regular row result set when an
application calls ct_command to fetch against the cursor. The fetch
command generates regular row results containing a number of
rows equal to the current “cursor rows” setting for the cursor.

Message Commands

• Message commands and results provide a way for clients and
servers to communicate specialized information to one another.

• A message has an “id”, which an application provides via
ct_command’s buffer parameter.

• Ids for user-defined messages must be greater than or equal to
CS_USER_MSGID and less than or equal to CS_USER_MAX_MSGID.

• If a message requires parameters, the application can call ct_param
once for each parameter that the message requires.

Package Commands

• A package command instructs an IBM DB/2 database server to
execute a package. A package is similar to a remote procedure. It
contains precompiled SQL statements that are executed as a unit
when the package is invoked.

• If the package requires parameters, the application can call ct_param
once for each parameter that the package requires.

3-56 Routines

ct_command Open Client Release 10.0

RPC (remote procedure call) Commands

• An RPC (remote procedure call) command instructs a server to
execute a stored procedure either on this server or a remote server.

• An application initiates an RPC command by calling ct_command
with *buffer as the name of the stored procedure to execute.

• If an application is using an RPC command to execute a stored
procedure that requires parameters, the application can call
ct_param once for each parameter the stored procedure requires.

• After sending an RPC command with ct_send, an application can
process the stored procedure’s results with ct_results and ct_fetch.
ct_results and ct_fetch are used to process both the result rows
generated by the stored procedure and the return parameters and
status from the procedure, if any.

• An alternative way to call a stored procedure is by executing a
language command containing a Transact-SQL execute statement.
For more information, see the Remote Procedure Calls topics page,
2-160.

Send-Data Commands

• An application uses a send-data command to write large amounts
of text or image data to a server.

• An application typically calls:

- ct_command to initiate the send-data command.

- ct_data_info to set the I/O descriptor for the operation.

- ct_send_data to write the value, in chunks, to the data stream.

- ct_send to send the command to the server.

• For more information on writing text or image values, see the Text
and Image topics page.

Send-Bulk-Data Commands

• Internally, SYBASE uses send-bulk-data commands as part of its
implementation of Client-Library’s bulk copy routines.

Client-Library/C Reference Manual 3-57

Open Client Release 10.0 ct_command

Example

/*
** ex_execute_cmd()
**
** Type of function:
** example program utility api
**
** Purpose:
** Sends a language command to the server.
*/

CS_RETCODE CS_PUBLIC
ex_execute_cmd(connection, cmdbuf)
CS_CONNECTION *connection;
CS_CHAR *cmdbuf;

{
CS_RETCODE retcode;
CS_INT restype;
CS_COMMAND *cmd;
CS_RETCODE query_code;

/*
** Get a command structure, store the command string in it,
** and send it to the server.
*/
if ((retcode = ct_cmd_alloc(connection, &cmd)) !=

CS_SUCCEED)
{

ex_error("ex_execute_cmd: ct_cmd_alloc() failed");
return retcode;

}

if ((retcode = ct_command (cmd, CS_LANG_CMD, cmdbuf,
CS_NULLTERM, CS_UNUSED)) != CS_SUCCEED)

{
ex_error("ex_execute_cmd: ct_command() failed");
(void)ct_cmd_drop(cmd);
return retcode;

}

/* Now send the command and process the results */
...CODE DELETED.....
}

This code excerpt is from the exutils.c example program. For further
examples of using ct_command, see the compute.c, ex_alib.c, getsend.c,
i18n.c, and rpc.c example programs.

See Also

ct_cmd_alloc, ct_cursor, ct_dynamic, ct_param, ct_send

3-58 Routines

ct_compute_info Open Client Release 10.0

ct_compute_info

Function

Retrieve compute result information.

Syntax

CS_RETCODE ct_compute_info(cmd, type, colnum, buffer,
buflen, outlen)

CS_COMMAND *cmd;
CS_INT type;
CS_INT colnum;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server command.

type – The type of information to return. For a list of the symbolic
values that are legal for type, see the chart in the Summary of Parameters
section.

colnum – The number of the compute column of interest, as it appears
in the compute row result set. Compute columns appear in the
order in which they are listed in the compute clause of a select
statement. The first column is number 1, the second number 2, and
so forth.

buffer – A pointer to the space in which ct_compute_info will place the
requested information.

If buflen indicates that *buffer is not large enough to hold the
requested information, ct_compute_info returns CS_FAIL.

buflen – The length, in bytes, of the *buffer data space or CS_UNUSED if
*buffer represents a fixed-length or symbolic value.

outlen – A pointer to an integer variable.

ct_compute_info sets *outlen to the length, in bytes, of the requested
information.

Client-Library/C Reference Manual 3-59

Open Client Release 10.0 ct_compute_info

If the requested information is larger than buflen bytes, an appli-
cation can use the value of *outlen to determine how many bytes
are needed to hold the information.

Summary of Parameters

Returns

Value of type: Value of
colnum:

ct_compute_info
returns: *buffer is set to: *outlen is set to:

CS_BYLIST_LEN CS_UNUSED The number of
elements in the bylist
array.

An integer value. sizeof(CS_INT)

CS_COMP_BYLIST CS_UNUSED An array containing the
bylist that produced
this compute row.

An array of
CS_SMALLINT
values.

The length of
the array, in
bytes.

CS_COMP_COLID The column
number of the
compute
column.

The select-list column
id of the column from
which the compute
column derives.

An integer value. sizeof(CS_INT)

CS_COMP_ID CS_UNUSED The compute id for the
current compute row.

An integer value. sizeof(CS_INT)

CS_COMP_OP The column
number of the
compute
column.

The aggregate operator
type for the compute
column.

A symbolic
value, one of:

CS_OP_SUM
CS_OP_AVG
CS_OP_COUNT
CS_OP_MIN
CS_OP_MAX

sizeof(CS_INT)

Table 3-27: Summary of parameters (ct_compute_info)

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection. For more information, see the
Asynchronous Programming topics page.

Table 3-28: Return values (ct_compute_info)

3-60 Routines

ct_compute_info Open Client Release 10.0

Comments

• Compute rows result from the compute clause of a select statement.
A compute clause generates a compute row every time the value of
its by column-list changes. A compute row will contain one column
for each aggregate operator in the compute clause. If a select
statement contains multiple compute clauses, separate compute
rows are generated by each clause.

Each compute row returned by the server is considered to be a
distinct result set. That is, each result set of type
CS_COMPUTE_RESULT will contain exactly one row.

• It is only legal to call ct_compute_info when compute information is
available; that is, after ct_results returns CS_COMPUTE_RESULT or
CS_COMPUTEFMT.

• Each section below contains information about a particular type of
compute result information.

The Bylist for a Compute Row

• A select statement’s compute clause may contain the keyword by,
followed by a list of columns. This list, known as the “bylist,”
divides the results into subgroups, based on changing values in the
specified columns. The compute clause’s aggregate operators are
applied to each subgroup, generating a compute row for each
subgroup.

The Select-List Column ID for a Compute Column

• The select-list column id for a compute column is the select-list id
of the column from which the compute column derives.

The Compute ID for this Compute Row

• A SQL select statement can have multiple compute clauses, each of
which returns a separate compute row. The compute id
corresponding to the first compute clause in a select statement is 1.

Client-Library/C Reference Manual 3-61

Open Client Release 10.0 ct_compute_info

The Aggregate Operator for a Particular Compute Row Column

• When called with type as CS_COMP_OP, ct_compute_info sets *buffer to
one of the following aggregate operator types:

Examples

 Assume the following command has been executed:

select dept, name, year, sales from employee
order by dept, name, year
compute count(name) by dept, name

1. The call:

CS_INT mybuffer;

ct_compute_info (cmd, CS_BYLIST_LEN, CS_UNUSED,
&mybuffer, CS_UNUSED, CS_UNUSED);

sets mybuffer to 2, because there are two items in the bylist.

2. The call:

CS_SMALLINT mybuffer[2];
CS_INT outlength;

ct_compute_info (cmd, CS_COMP_BYLIST, CS_UNUSED,
mybuffer, sizeof(mybuffer), &outlength)

copies the CS_SMALLINT values 1 and 2 into mybuffer[0] and
mybuffer[1] to indicate that the bylist is composed of columns 1
and 2 from the select list.

3. The call:

CS_INT mybuffer;

ct_compute_info (cmd, CS_COMP_COLID, 1, &mybuffer,
CS_UNUSED,NULL);

*buffer set to: To indicate:

CS_OP_AVG Average aggregate operator.

CS_OP_COUNT Count aggregate operator.

CS_OP_MAX Maximum aggregate operator.

CS_OP_MIN Minimum aggregate operator.

CS_OP_SUM Sum aggregate operator.

Table 3-29: Aggregate operator types

3-62 Routines

ct_compute_info Open Client Release 10.0

 sets mybuffer to 2, since name is the second column in the select
list.

4. The call:

CS_INT mybuffer;

ct_compute_info (cmd, CS_COMP_ID, CS_UNUSED,
&mybuffer, CS_UNUSED, NULL);

sets mybuffer to 1 because there is only a single compute clause in
the select statement.

5. The call:

CS_INT mybuffer;

ct_compute_info (cmd, CS_COMP_OP, 1, &mybuffer,
CS_UNUSED, NULL);

sets mybuffer to the symbolic value CS_OP_COUNT, since the
aggregate operator for the first compute column is a count.

For another example of using ct_compute_info, see the compute.c example
program.

See Also

ct_bind, ct_describe, ct_res_info, ct_results

Client-Library/C Reference Manual 3-63

Open Client Release 10.0 ct_con_alloc

ct_con_alloc

Function

Allocate a CS_CONNECTION structure.

Syntax

CS_RETCODE ct_con_alloc(context, con_pointer)

CS_CONTEXT *context;
CS_CONNECTION **con_pointer;

Parameters

context – A pointer to a CS_CONTEXT structure.

con_pointer – The address of a pointer variable. ct_con_alloc sets
*con_pointer to the address of a newly-allocated CS_CONNECTION
structure.

In case of error, ct_con_alloc sets *con_pointer to NULL.

Returns

The most common reason for a ct_con_alloc failure is a lack of adequate
memory.

Comments

• A CS_CONNECTION structure, also called a “connection structure,”
contains information about a particular client/server connection.

• Before calling ct_con_alloc, an application must allocate a context
structure by calling the CS-Library routine cs_ctx_alloc, and must
initialize Client-Library by calling ct_init.

• Connecting to a server is a three-step process. To connect to a
server, an application:

- Calls ct_con_alloc to allocate a CS_CONNECTION structure.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Table 3-30: Return values (ct_con_alloc)

3-64 Routines

ct_con_alloc Open Client Release 10.0

- Calls ct_con_props to set the values of connection-specific
properties, if desired.

- Calls ct_connect to create the connection and log in to the server.

• An application can have multiple open connections to one or more
servers at the same time.

For example, an application can simultaneously have two
connections to the server MARS, one connection to VENUS, and
one connection to PLUTO. The context property
CS_MAX_CONNECT, set by ct_config, determines the maximum
number of open connections allowed per context.

Each server connection requires a separate CS_CONNECTION
structure.

• In order to send commands to a server, one or more command
structures must be allocated for a connection. ct_cmd_alloc allocates
a command structure.

Example

/*
** DoConnect()
**
** Type of function:
** async example program api
*/
CS_STATIC CS_CONNECTION CS_INTERNAL *
DoConnect(argc, argv)
int argc;
char **argv;
{

CS_CONNECTION *connection;
CS_INT netio_type = CS_ASYNC_IO;
CS_RETCODE retcode;

/* Open a connection to the server */
retcode = ct_con_alloc (Ex_context, &connection);
if (retcode != CS_SUCCEED)
{

ex_panic("ct_con_alloc failed");
}

/* Set properties for the connection */
...CODE DELETED.....

/* Open the connection */
...CODE DELETED.....

}

Client-Library/C Reference Manual 3-65

Open Client Release 10.0 ct_con_alloc

For further examples of using ct_con_alloc, see the blktxt.c, ex_amain.c,
and exutils.c example programs.

See Also

cs_ctx_alloc, ct_cmd_alloc, ct_close, ct_connect, ct_con_props

3-66 Routines

ct_con_drop Open Client Release 10.0

ct_con_drop

Function

De-allocate a CS_CONNECTION structure.

Syntax

CS_RETCODE ct_con_drop(connection)

CS_CONNECTION *connection;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

Returns

The most common reason for a ct_con_drop failure is that the connection
is still open.

Comments

• When a CS_CONNECTION structure is de-allocated, all
CS_COMMAND structures associated with it are de-allocated.

• A CS_CONNECTION structure contains information about a
particular client/server connection.

• Once a CS_CONNECTION has been de-allocated, it cannot be reused.
To allocate a new CS_CONNECTION, an application can call
ct_con_alloc.

• An application cannot de-allocate a CS_CONNECTION structure
until the connection it represents is closed. To close a connection,
an application can call ct_close.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection. For more information, see the
Asynchronous Programming topics page.

Table 3-31: Return values (ct_con_drop)

Client-Library/C Reference Manual 3-67

Open Client Release 10.0 ct_con_drop

• A connection can become unusable due to error. If this occurs,
Client-Library marks the connection as “dead.” An application can
use the CS_CON_STATUS property to determine if a connection has
been marked dead.

If a connection has been marked dead, an application must call
ct_close(CS_FORCE_CLOSE) to close the connection and ct_con_drop
to drop its CS_CONNECTION structure.

An exception to this rule occurs for certain types of results-
processing errors. If a connection is marked dead while
processing results, the application can try calling
ct_cancel(CS_CANCEL_ALL or CS_CANCEL_ATTN) to “revive” the
connection. If this fails, the application must close the connection
and drop its CS_CONNECTION structure.

Example

/* ex_con_cleanup() */

CS_RETCODE CS_PUBLIC
ex_con_cleanup(connection, status)
CS_CONNECTION *connection;
CS_RETCODE status;
{

CS_RETCODE retcode;
CS_INT close_option;

/* Close connection */
...CODE DELETED.....

retcode = ct_con_drop (connection);
if (retcode != CS_SUCCEED)
{

ex_error("ex_con_cleanup: ct_con_drop()
failed");

return retcode;
}

return retcode;
}

This code excerpt is from the exutils.c example program. For further
examples of using ct_con_drop, see the blktxt.c and ex_amain.c example
programs.

See Also

ct_con_alloc, ct_close, ct_connect, ct_con_props

3-68 Routines

ct_con_props Open Client Release 10.0

ct_con_props

Function

Set or retrieve connection structure properties.

Syntax

CS_RETCODE ct_con_props(connection, action, property,
buffer, buflen, outlen)

CS_CONNECTION *connection;
CS_INT action;
CS_INT property;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

action – One of the following symbolic values:

property – The symbolic name of the property whose value is being set
or retrieved. The Properties topics page lists Client-Library
properties.

buffer – If a property value is being set, buffer points to the value to use
in setting the property.

If a property value is being retrieved, buffer points to the space in
which ct_con_props will place the requested information.

buflen – Generally, buflen is the length, in bytes, of *buffer.

Value of action: ct_con_props:

CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to its
Client-Library default value.

Table 3-32: Values for action (ct_con_props)

Client-Library/C Reference Manual 3-69

Open Client Release 10.0 ct_con_props

If a property value is being set and the value in *buffer is null-termi-
nated, pass buflen as CS_NULLTERM.

If *buffer is a fixed-length or symbolic value, pass buflen as
CS_UNUSED.

outlen – A pointer to an integer variable.

outlen is not used if a property value is being set and should be
passed as NULL.

If a property value is being retrieved and outlen is supplied, ct_con_-
props sets *outlen to the length, in bytes, of the requested infor-
mation.

If the information is larger than buflen bytes, an application can use
the value of *outlen to determine how many bytes are needed to
hold the information.

Summary of Parameters

For information on action, buffer, buflen, and outlen, see ‘‘action, buffer,
buflen, and outlen’’ on page 2-125.

Returns

Comments

• Connection properties define aspects of Client-Library behavior at
the connection level.

• All connections created within a context pick up default property
values from the parent context. An application can override these
default values by calling ct_con_props.

If an application changes context property values after allocating
connections for the context, existing connections will not pick up
the new property values. New connections allocated within the
context will use the new property values as defaults.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for
this connection. For more information, see the
Asynchronous Programming topics page.

Table 3-33: Return values (ct_con_props)

3-70 Routines

ct_con_props Open Client Release 10.0

• All command structures allocated for a connection pick up default
property values from the parent connection. An application can
override these default values by calling ct_cmd_props to set property
values at the command structure level.

If an application changes connection property values after
allocating command structures for the connection, the existing
command structures will not pick up the new property values.
New command structures allocated for the connection will use
the new property values as defaults.

• Some connection properties only take effect if they are set before an
application calls ct_connect to establish the connection. See the
“Notes” column in Table 3-34: Client-Library connection properties, on
page 3-70.

• See the Properties topics page for more information on properties.

• An application can use ct_con_props to set or retrieve the following
properties:

Property name: What it is: *buffer is:

Client-
Library can
set or
retrieve at
what level?

Notes

CS_ANSI_BINDS Whether or not to use
ANSI-style binds.

CS_TRUE or
CS_FALSE.

Context,
connection.

CS_APPNAME The application name
used when logging into
the server.

A character
string.

Connection. Login property.

Cannot be set
after connection
is established.

CS_ASYNC_
NOTIFS

Whether a connection
will receive registered
procedure notifications
asynchronously.

CS_TRUE or
CS_FALSE.

Connection.

CS_BULK_LOGIN Whether or not a
connection is enabled to
perform bulk copy “in”
operations.

CS_TRUE or
CS_FALSE.

Connection. Login property.

Cannot be set
after connection
is established.

CS_CHARSETCNV Whether or not character
set conversion is taking
place.

CS_TRUE or
CS_FALSE.

Connection. Retrieve only,
after connection
is established.

Table 3-34: Client-Library connection properties

Client-Library/C Reference Manual 3-71

Open Client Release 10.0 ct_con_props

CS_COMMBLOCK A pointer to a
communication sessions
block.

This property is specific
to IBM-370 systems and
is ignored by all other
platforms.

A pointer
value.

Connection. Cannot be set
after connection
is established.

CS_CON_STATUS The connection’s status. A CS_INT-sized
bit-mask.

Connection. Retrieve only.

CS_DIAG_TIMEOUT When in-line error
handling is in effect,
whether Client-Library
should fail or retry on
timeout errors.

CS_TRUE or
CS_FALSE.

Connection.

CS_DISABLE_POLL Whether or not to
disable polling. If polling
is disabled, ct_poll does
not report asynchronous
operation completions.

CS_TRUE or
CS_FALSE.

Context,
connection.

Useful in
layered
asynchronous
applications.

CS_EED_CMD A pointer to a command
structure containing
extended error data.

A pointer
value.

Connection. Retrieve only.

CS_ENDPOINT The file descriptor for a
connection.

An integer
value, or -1 if
the platform
does not
support
CS_END
POINT

Connection. Retrieve only,
after connection
is established.

CS_EXPOSE_FMTS Whether or not to expose
results of type
CS_ROWFMT_RESULT
and
CS_COMPUTEFMT_RE
SULT.

CS_TRUE or
CS_FALSE.

Context,
connection.

Cannot be set
after connection
is established.

Property name: What it is: *buffer is:

Client-
Library can
set or
retrieve at
what level?

Notes

Table 3-34: Client-Library connection properties (continued)

3-72 Routines

ct_con_props Open Client Release 10.0

CS_EXTRA_INF Whether or not to return
the extra information
that’s required when
processing Client-
Library messages in-line
using a SQLCA,
SQLCODE, SQLSTATE.

CS_TRUE or
CS_FALSE.

Context,
connection.

CS_HIDDEN_KEYS Whether or not to expose
hidden keys.

CS_TRUE or
CS_FALSE.

Context,
connection,
command.

CS_HOSTNAME The host machine name. A character
string.

Connection. Login property.

Cannot be set
after connection
is established.

CS_LOC_PROP A CS_LOCALE structure
that defines localization
information.

A CS_LOCALE
structure
previously
allocated by
the application.

Connection. Login property.

Cannot be set
after connection
is established.

CS_LOGIN_STATUS Whether or not the
connection is open.

CS_TRUE or
CS_FALSE.

Connection. Retrieve only.

CS_NETIO Whether network I/O is
synchronous or
asynchronous.

CS_SYNC_IO,
CS_ASYNC_IO.

Context,
connection.

Asynchronous
connections are
either fully or
deferred
asynchronous,
to match their
parent context.

CS_NOTIF_CMD A pointer to a command
structure containing
registered procedure
notification parameters.

A pointer
value.

Connection. Retrieve only.

CS_PACKETSIZE The TDS packet size. An integer
value.

Connection. Negotiated
login property.

Cannot be set
after connection
is established.

Property name: What it is: *buffer is:

Client-
Library can
set or
retrieve at
what level?

Notes

Table 3-34: Client-Library connection properties (continued)

Client-Library/C Reference Manual 3-73

Open Client Release 10.0 ct_con_props

CS_PARENT_
HANDLE

The address of the
connection structure’s
parent context.

Set to an
address.

Connection,
command.

Retrieve only.

CS_PASSWORD The password used to
log into the server.

A character
string.

Connection. Login property.

CS_SEC_
APPDEFINED

Whether or not the
connection will use
application-defined
challenge/response
security handshaking.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set
after connection
is established.

CS_SEC_
CHALLENGE

Whether or not the
connection will use
Sybase-defined
challenge/response
security handshaking.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set
after connection
is established.

CS_SEC_
ENCRYPTION

Whether or not the
connection will use
encrypted password
security handshaking.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set
after connection
is established.

CS_SEC_
NEGOTIATE

Whether or not the
connection will use
trusted-user security
handshaking.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set
after connection
is established.

CS_SERVERNAME The name of the server
to which this connection
is connected.

A string value. Connection. Retrieve only,
after connection
is established.

CS_TDS_VERSION The version of the TDS
protocol that the
connection is using.

A symbolic
version level.

Connection. Negotiated
login property.

Cannot be set
after connection
is established.

CS_TEXTLIMIT The largest text or image
value to be returned on
this connection.

An integer
value.

Context,
connection.

CS_TRANSACTION_
NAME

A transaction name. A string value. Connection.

Property name: What it is: *buffer is:

Client-
Library can
set or
retrieve at
what level?

Notes

Table 3-34: Client-Library connection properties (continued)

3-74 Routines

ct_con_props Open Client Release 10.0

Example

/*
** EstablishConnection()
**
** Purpose:
** This routine establishes a connection to the server
** identified in example.h and sets the CS_USER,
** CS_PASSWORD, and CS_APPNAME properties for the
** connection.
**
** NOTE: The username, password, and server are defined
** in the example header file.
*/

CS_STATIC CS_RETCODE
EstablishConnection(context, connection)
CS_CONTEXT *context;
CS_CONNECTION **connection;
{

CS_INT len;
CS_RETCODE retcode;
CS_BOOL bool;

/* Allocate a connection structure */
...CODE DELETED.....

CS_USERDATA User-allocated data. User-allocated
data.

Connection,
 command.

CS_USERNAME The name used to log
into the server.

A character
string.

Connection. Login property.

Cannot be set
after connection
is established.

Property name: What it is: *buffer is:

Client-
Library can
set or
retrieve at
what level?

Notes

Table 3-34: Client-Library connection properties (continued)

Client-Library/C Reference Manual 3-75

Open Client Release 10.0 ct_con_props

/*
** If a username is defined in example.h , set the
** CS_USERNAME property.
*/
if (retcode == CS_SUCCEED && Ex_username != NULL)
{

if ((retcode = ct_con_props (*connection, CS_SET,
CS_USERNAME, Ex_username, CS_NULLTERM, NULL))
!= CS_SUCCEED)

{
ex_error("ct_con_props(username) failed");

}
}

/*
** If a password is defined in example.h , set the
** CS_PASSWORD property.
*/
if (retcode == CS_SUCCEED && Ex_password != NULL)
{

if ((retcode = ct_con_props (*connection, CS_SET,
CS_PASSWORD, Ex_password, CS_NULLTERM, NULL))
!= CS_SUCCEED)

{
ex_error("ct_con_props(passwd) failed");

}
}

/* Set the CS_APPNAME property */
...CODE DELETED.....

/* Enable the bulk login property */
if (retcode == CS_SUCCEED)
{

bool = CS_TRUE;
retcode = ct_con_props (*connection, CS_SET,

CS_BULK_LOGIN, &bool, CS_UNUSED, NULL);
if (retcode != CS_SUCCEED)
{

 ex_error("ct_con_props(bulk_login) failed");
}

}

/* Open a server connection */
...CODE DELETED.....

}

This code excerpt is from the blktxt.c example program. For further
examples of using ct_con_props, see the ex_alib.c, ex_amain.c, exutils.c,
and rpc.c example programs.

3-76 Routines

ct_con_props Open Client Release 10.0

See Also

ct_capability, ct_cmd_props, ct_connect, ct_config, ct_init, Properties

Client-Library/C Reference Manual 3-77

Open Client Release 10.0 ct_config

ct_config

Function

Set or retrieve context properties.

Syntax

CS_RETCODE ct_config(context, action, property,
buffer, buflen, outlen)

CS_CONTEXT *context;
CS_INT action;
CS_INT property;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters

context – A pointer to a CS_CONTEXT structure.

action – One of the following symbolic values:

property – The symbolic name of the property whose value is being set
or retrieved. The Properties topics page lists Client-Library
properties.

buffer – If a property value is being set, buffer points to the value to use
in setting the property.

If a property value is being retrieved, buffer points to the space in
which ct_config will place the requested information.

buflen – Generally, buflen is the length, in bytes, of *buffer.

If a property value is being set and the value in *buffer is null-termi-
nated, pass buflen as CS_NULLTERM.

Value of action: ct_config:

CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to its
Client-Library default value.

Table 3-35: Values for action (ct_config)

3-78 Routines

ct_config Open Client Release 10.0

If *buffer is a fixed-length value, symbolic value, or function, pass
buflen as CS_UNUSED.

outlen – A pointer to an integer variable.

outlen is not used if a property value is being set and should be
passed as NULL.

If a property value is being retrieved and outlen is supplied, ct_config
sets *outlen to the length, in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use
the value of *outlen to determine how many bytes are needed to
hold the information.

Summary of Parameters

For information on action, buffer, buflen, and outlen, see ‘‘action, buffer,
buflen, and outlen’’ on page 2-125.

Returns

Comments

• Context properties define aspects of Client-Library behavior at the
context level.

• All connections created within a context pick up default property
values from the parent context. An application can override these
default values by calling ct_con_props to set property values at the
connection level.

If an application changes context property values after allocating
connections for the context, existing connections will not pick up
the new property values. New connections allocated within the
context will use the new property values as defaults.

• There are actually three kinds of context properties:

- Context properties specific to CS-Library.

- Context properties specific to Client-Library.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Table 3-36: Return values (ct_config)

Client-Library/C Reference Manual 3-79

Open Client Release 10.0 ct_config

- Context properties specific to Server-Library.

cs_config sets and retrieves the values of CS-Library-specific
context properties. Properties set via cs_config affect only CS-
Library.

ct_config sets and retrieves the values of Client-Library-specific
context properties. Properties set via ct_config affect only Client-
Library.

srv_props sets and retrieves the values of Server-Library-specific
context properties. Properties set via srv_props affect only Server-
Library.

• See the Properties topics page for more information on properties.

• An application can use ct_config to set or retrieve the following
properties:

Property name: What it is: *buffer is:

Client-
Library can
set or
retrieve at
what level?

Notes

CS_ANSI_BINDS Whether or not to use
ANSI-style binds.

CS_TRUE or
CS_FALSE.

Context,
connection.

CS_DISABLE_POLL Whether or not to
disable polling. If
polling is disabled,
ct_poll does not report
asynchronous operation
completions.

CS_TRUE or
CS_FALSE.

Context,
connection.

Useful in
layered
asynchronous
 applications.

CS_EXPOSE_FMTS Whether or not to
expose results of type
CS_ROWFMT_RESULT
and
CS_COMPUTEFMT_
RESULT.

CS_TRUE or
CS_FALSE.

Context,
connection

Takes effect
only if set
before
connection is
established.

CS_EXTRA_INF Whether or not to return
the extra information
that’s required when
processing Client-
Library messages in-line
using a SQLCA,
SQLCODE, or
SQLSTATE.

CS_TRUE or
CS_FALSE.

Context,
connection

Table 3-37: Client-Library context properties

3-80 Routines

ct_config Open Client Release 10.0

CS_HIDDEN_KEYS Whether or not to
expose hidden keys.

CS_TRUE or
CS_FALSE.

Context,
connection,
command.

CS_IFILE The path and name of
the interfaces file.

A character
string.

Context.

CS_LOGIN_TIMEOU
T

The login timeout value. An integer value. Context.

CS_MAX_CONNECT The maximum number
of connections for this
context.

An integer value. Context.

CS_MEM_POOL A memory pool that
Client-Library will use
to satisfy interrupt-level
memory requirements.

If action is
CS_SET, *buffer is
a pool of bytes.

If action is
CS_GET, *buffer
is set to the
address of a pool
of bytes.

Context. Useful in
asynchronous
 applications.

CS_NETIO Whether network I/O is
synchronous, fully
asynchronous, or
deferred asynchronous.

CS_SYNC_IO,
CS_ASYNC_IO,
or
CS_DEFER_IO.

Context,
connection.

Cannot be set
for a context
with open
connections.

CS_NO_TRUNCATE Whether Client-Library
should truncate or
sequence messages that
are longer than
CS_MAX_MSG.

CS_TRUE or
CS_FALSE.

Context.

CS_NOINTERRUPT Whether or not the
application can be
interrupted.

CS_TRUE or
CS_FALSE.

Context.

CS_TEXTLIMIT The largest text or image
value to be returned on
this connection.

An integer value. Context,
connection.

CS_TIMEOUT The timeout value. An integer value. Context.

Property name: What it is: *buffer is:

Client-
Library can
set or
retrieve at
what level?

Notes

Table 3-37: Client-Library context properties (continued)

Client-Library/C Reference Manual 3-81

Open Client Release 10.0 ct_config

CS_USER_ALLOC A user-defined memory
allocation routine.

If action is
CS_SET, *buffer is
the user-defined
function to
install.

If action is
CS_GET, *buffer
is set to the
address of the
user-defined
function that is
currently
installed.

Context. Useful in
asynchronous
 application.

CS_USER_FREE A user-defined memory
free routine.

If action is
CS_SET, *buffer is
the user-defined
function to
install.

If action is
CS_GET, *buffer
is set to the
address of the
user-defined
function that is
currently
installed.

Context. Useful in
asynchronous
 applications.

CS_VER_STRING Client-Library’s true
version string.

A character
string.

Context. Retrieve only.

CS_VERSION The version of Client-
Library in use by this
context.

A symbolic
version level.

Currently, the
only possible
value is
CS_VERSION_
100

Context. Retrieve only.

Property name: What it is: *buffer is:

Client-
Library can
set or
retrieve at
what level?

Notes

Table 3-37: Client-Library context properties (continued)

3-82 Routines

ct_config Open Client Release 10.0

Example

/* Set the input/output type to asynchronous */
CS_INT propvalue;
if (retcode == CS_SUCCEED)
{

propvalue = CS_ASYNC_IO;
retcode = ct_config (*context, CS_SET, CS_NETIO,

(CS_VOID *)&propvalue, CS_UNUSED, NULL);
if (retcode != CS_SUCCEED)
{

ex_error("ex_init: ct_config(netio) failed");
}

}

This code excerpt is based on code in the exutils.c example program.

See Also

cs_config, ct_cmd_props, ct_capability, ct_con_props, ct_connect, ct_init, Properties

Client-Library/C Reference Manual 3-83

Open Client Release 10.0 ct_connect

ct_connect

Function

Connect to a server.

Syntax

CS_RETCODE ct_connect(connection, server_name,
snamelen)

CS_CONNECTION *connection;
CS_CHAR *server_name;
CS_INT snamelen;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

Use ct_con_alloc to allocate a CS_CONNECTION structure, and ct_con_-
props to initialize this structure with login parameters.

server_name – A pointer to the name of the server to connect to.
*server_name is the name given to the server in the interfaces file on
the application’s host machine. ct_connect looks up *server_name in
the interfaces file to determine how to connect to this server.

If server_name is NULL, ct_connect looks up the interfaces entry that
corresponds to the value of the DSQUERY environment variable or
logical name. If DSQUERY has not been explicitly set, it has a value
of “SYBASE”. For more information on the interfaces file, see the
Open Client/Server Supplement.

➤ Note
An interfaces file may not be used on some platforms. For information on

whether your platform uses an interfaces file, see the Open Client/Server
Supplement for your platform.

snamelen – The length, in bytes, of *server_name. If *server_name is null-
terminated, pass snamelen as CS_NULLTERM. If server_name is NULL,
pass snamelen as 0 or CS_UNUSED.

3-84 Routines

ct_connect Open Client Release 10.0

Returns

Common reason for a ct_connect failure include:

• Unable to allocate sufficient memory.

• The maximum number of connections is already established.
ct_config is used to set the maximum number of connections
allowed per context.

• Unable to open socket.

• Server name not found in interfaces file.

• Unknown host machine name.

• SQL Server is unavailable or does not exist.

• Login incorrect.

• Could not open interfaces file.

When ct_connect returns CS_FAIL, it generates a Client-Library error
number that indicates the error.

Comments

• Information about the connection is stored in a CS_CONNECTION
structure, which uniquely identifies the connection. In the process
of establishing a connection, ct_connect sets up communication with
the network, logs into the server, and communicates any
connection-specific property information to the server.

• Because creating a connection involves logging into a server, an
application must define login parameters (such as a server user
name and password) before calling ct_connect. An application can
call ct_con_props to define login parameters.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the Asynchronous Programming topics
page.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-38: Return values (ct_connect)

Client-Library/C Reference Manual 3-85

Open Client Release 10.0 ct_connect

• A connection can be either synchronous or asynchronous. The
Client-Library property CS_NETIO determines whether a
connection will be synchronous or asynchronous.

For more information on asynchronous connections, see the
Asynchronous Programming topics page, 2-3.

• The maximum number of open connections per context is
determined by the CS_MAX_CONNECT property (set by ct_config). If
not explicitly set, the maximum number of connections defaults to
a platform-specific value. For information on platform-specific
property values, see the Open Client/Server Supplement.

• When a connection attempt is made between a client and a server,
there are two ways in which the process can fail (assuming that the
system is correctly configured):

- The machine that the server is supposed to be on is running
correctly and the network is running correctly.

In this case, if there is no server listening on the specified port, the
machine that the server is supposed to be on will signal the client,
via a network error, that the connection can’t be formed.
Regardless of the login timeout value, the connection will fail.

- The machine that the server is on is down.

In this case, the machine that the server is supposed to be on will
not respond. Because “no response” is not considered to be an
error, the network will not signal the client that an error has
occurred. However, if a login timeout period has been set, a
timeout error will occur when the client fails to receive a response
within the set period.

• To close a connection, an application calls ct_close.

Multiple QUERY Entries in an Interfaces File

• It is possible to set up an interfaces file so that if ct_connect fails to
establish a connection with a server, it attempts to establish a
connection with an alternate server.

An application can use the ct_connect call:

ct_connect(connection, "MARS", CS_NULLTERM)

to connect to the server MARS. An interfaces file containing an
entry for MARS might look like this:

3-86 Routines

ct_connect Open Client Release 10.0

#
MARS

query tcp hp-ether violet 1025
master tcp hp-ether violet 1025
console tcp hp-ether violet 1026

#
VENUS

query tcp hp-ether plum 1050
master tcp hp-ether plum 1050
console tcp hp-ether plum 1051

#
NEPTUNE

query tcp hp-ether mauve 1060
master tcp hp-ether mauve 1060
console tcp hp-ether mauve 1061

The application is directed to port number 1025 on the machine
violet. If MARS is not available, the ct_connect call fails. If the inter-
faces file has multiple query entries in it for MARS, however, then
when the first connection attempt fails, ct_connect will automati-
cally attempt to connect to the next server listed. Such an inter-
faces file might look like this:

#
MARS

query tcp hp-ether violet 1025
query tcp hp-ether plum 1050
query tcp hp-ether mauve 1060
master tcp hp-ether violet 1025
console tcp hp-ether violet 1026

#
VENUS

query tcp hp-ether plum 1050
master tcp hp-ether plum 1050
console tcp hp-ether plum 1051

#
NEPTUNE

query tcp hp-ether mauve 1060
master tcp hp-ether mauve 1060
console tcp hp-ether mauve 1061

Note that the second query entry under MARS is identical to the
query entry under VENUS, and that the third query entry is
identical to the query entry under NEPTUNE. If this interfaces file is
used, then if the application fails to connect with MARS it will
automatically attempt to connect with VENUS. If it fails to
connect with VENUS, it will automatically attempt to connect
with NEPTUNE.

Client-Library/C Reference Manual 3-87

Open Client Release 10.0 ct_connect

There is no limit on the number of alternate servers that may be
listed under a server’s interfaces file entry, but each alternate
server must be listed in the same interfaces file.

Two numbers may be added after the server’s name in the inter-
faces file:

#
MARS retries seconds

query tcp hp-ether violet 1025
query tcp hp-ether plum 1050
query tcp hp-ether mauve 1060
master tcp hp-ether violet 1025
console tcp hp-ether violet 1026

retries represents the number of additional times to loop through
the list of query entries if no connection is achieved during the
first pass. seconds represents the amount of time, in seconds, that
ct_connect will wait at the top of the loop before going through
the list again. These numbers are optional. If they are not
included, ct_connect will try to connect to each query entry only
once.

Looping through the list and pausing between loops is useful in
case any of the candidate servers is in the process of booting.

Multiple query lines can be particularly useful when alternate
servers contain mirrored copies of the primary server’s
databases.

Example

/* ex_connect() */

CS_RETCODE CS_PUBLIC
ex_connect(context, connection, appname, username, password,

server)
CS_CONTEXT *context;
CS_CONNECTION **connection;
CS_CHAR *appname;
CS_CHAR *username;
CS_CHAR *password;
CS_CHAR *server;
{

CS_INT len;
CS_RETCODE retcode;

/* Allocate a connection structure */
...CODE DELETED.....

/* Set properties for new connection */
...CODE DELETED.....

3-88 Routines

ct_connect Open Client Release 10.0

/* Open the connection */
if (retcode == CS_SUCCEED)
{

len = (server == NULL) ? 0 : CS_NULLTERM;
retcode = ct_connect (*connection, server, len);
if (retcode != CS_SUCCEED)
{

ex_error("ct_connect failed");
}

}

if (retcode != CS_SUCCEED)
{

ct_con_drop(*connection);
*connection = NULL;

}

return retcode;
}

This code excerpt is from the exutils.c example program. For further
examples of using ct_connect, see the blktxt.c and ex_amain.c example
programs.

See Also

ct_close, ct_con_alloc, ct_con_drop, ct_con_props, ct_remote_pwd

Client-Library/C Reference Manual 3-89

Open Client Release 10.0 ct_cursor

ct_cursor

Function

Initiate a Client-Library cursor command.

Syntax

CS_RETCODE ct_cursor(cmd, type, name, namelen, text,
textlen, option)

CS_COMMAND *cmd;
CS_INT type;
CS_CHAR *name;
CS_INT namelen;
CS_CHAR *text;
CS_INT textlen;
CS_INT option;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

type – The type of cursor command to initiate. The chart in the Summary
of Parameters section lists the symbolic values that are legal for type.

name – A pointer to the name associated with the cursor command, if
any. The chart in the Summary of Parameters section indicates which
types of commands require names.

namelen – The length, in bytes, of *name. If *name is null-terminated,
pass namelen as CS_NULLTERM. If name is NULL pass namelen as
CS_UNUSED.

text – A pointer to the text associated with the cursor command, if any.
The chart in the Summary of Parameters section indicates which
commands require text and what that text must be.

textlen – The length, in bytes, of *text. If *text is null-terminated, pass
textlen as CS_NULLTERM. If text is NULL, pass textlen as CS_UNUSED.

option – The option associated with this command, if any. The chart in
the Summary of Parameters section indicates which commands take an
option and what that option can be.

3-90 Routines

ct_cursor Open Client Release 10.0

Summary of Parameters

Value of type: ct_cursor
initiates: name is: *text is: option is:

CS_CURSOR_CLOSE A cursor close
command.

NULL NULL CS_DEALLOC to close and
de-allocate the cursor.

CS_UNUSED to close the
cursor without de-
allocating it.

CS_CURSOR_DEALLOC A de-allocate
cursor
command.

NULL NULL CS_UNUSED

CS_CURSOR_DECLARE A cursor
declare
command.

A pointer to
the cursor
name.

A pointer to
the SQL text
that is the
body of the
cursor.

CS_FOR_UPDATE to
indicate that the cursor is
for update.

CS_READ_ONLY to
indicate that the cursor is
read-only.

CS_UNUSED. The
meaning of CS_UNUSED
is server-defined.

CS_CURSOR_DELETE A cursor
delete
command.

A pointer to
the name of
the table to
delete from.

NULL CS_UNUSED

CS_CURSOR_OPEN A cursor open
command.

NULL NULL CS_UNUSED

CS_CURSOR_OPTION A cursor set
options
command.

NULL NULL CS_FOR_UPDATE to
indicate that the cursor is
for update.

CS_READ_ONLY to
indicate that the cursor is
read-only.

CS_UNUSED. The
meaning of CS_UNUSED
is server-defined.

CS_CURSOR_ROWS A cursor set
rows
command.

NULL NULL An integer representing the
number of rows to be
returned with a single fetch
request.

Table 3-39: Summary of parameters (ct_cursor)

Client-Library/C Reference Manual 3-91

Open Client Release 10.0 ct_cursor

Returns

Comments

• Initiating a command is the first step in sending it to a server.
Client-Library cursor commands include commands to declare,
open, set cursor rows, close, and de-allocate a cursor as well as
commands to update and delete rows in an underlying table.

• Sending a command to a server is a four step process. To send a
command to a server, an application must:

- Initiate the command by calling ct_cursor. This sets up internal
structures that are used in building a command stream to send to
the server.

- Pass parameters for the command (if required) by calling ct_param
once for each parameter that the command requires.

Not all commands require parameters. See the ‘‘Client-Library
Cursor Declare’’ section for an explanation of when to call
ct_param.

- Send the command to the server by calling ct_send.

- Verify the success of the command by calling ct_results.

CS_CURSOR_UPDATE A cursor
update
command.

A pointer to
the name of
the table to
update.

A pointer to
the SQL
update
statement.

CS_UNUSED

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-40: Return values (ct_cursor)

Value of type: ct_cursor
initiates: name is: *text is: option is:

Table 3-39: Summary of parameters (ct_cursor) (continued)

3-92 Routines

ct_cursor Open Client Release 10.0

This last step does not imply that an application need only call
ct_results once. If the value of ct_results’ result_type parameter
indicates that there are fetchable results, the application will
most likely process the results using a loop controlled by
ct_results. See the Open Client Client-Library/C Programmer’s Guide
for a discussion of processing results.

Batching Client-Library Cursor Commands

• An application can “batch” together commands to achieve
reduced network traffic and improved application performance.

To batch together commands to declare, set rows for, and open a
Client-Library cursor, the application:

- Calls ct_cursor to declare the cursor.

- Calls ct_param (if necessary) to define the format(s) of host
variable(s).

- Calls ct_cursor (optional) to set rows for the cursor.

- Calls ct_cursor to open the cursor.

- Calls ct_param (if necessary) to supply value(s) for the host
variable(s).

- Calls ct_send to send the command batch to the server.

The sequence of calls is:

ct_cursor(CS_CURSOR_DECLARE)
ct_param
ct_cursor(CS_CURSOR_ROWS)
ct_cursor(CS_CURSOR_OPEN)
ct_param
ct_send

Commands must be batched in the logical order: declare, set
cursor rows, open.

Client-Library Cursor Close

• A ct_cursor(CS_CURSOR_CLOSE) command throws away the cursor
result set that was generated when the cursor was opened.

• An application can re-open a closed cursor.

Client-Library/C Reference Manual 3-93

Open Client Release 10.0 ct_cursor

Client-Library Cursor De-allocate

• A ct_cursor(CS_CURSOR_DEALLOC) command de-allocates a Client-
Library cursor. If a cursor has been de-allocated, it cannot be re-
opened.

• An application cannot de-allocate an open cursor.

• To initiate a command to both close and de-allocate a Client-
Library cursor, call ct_cursor with type as CS_CURSOR_CLOSE and
option as CS_DEALLOC.

Client-Library Cursor Declare

• Declaring a Client-Library cursor is equivalent to associating the
cursor name with a SQL statement. This SQL statement is called
the body of the cursor.

The SQL statement associated with a cursor can be a command
to execute a stored procedure. For example:

ct_cursor (cmd, CS_CURSOR_DECLARE, "mycursor",
CS_NULLTERM, "execute my_proc",
CS_NULLTERM,CS_UNUSED);

ct_send(cmd);

In this case, the body of the cursor is the text that makes up the
stored procedure.

• The SQL statement associated with a cursor can contain host
variables. If it does, an application must define the variables’
formats for the server by calling ct_param at cursor declare time,
once for each variable.

➤ Note
Defining a variable’s format is not the same thing as supplying a value for the

variable. An application supplies values for host variables at cursor open time.

Skip this step if the SQL statement is a stored procedure or a
dynamic SQL statement, but supply values for a stored
procedure’s input parameter(s) or a dynamic SQL statement’s
placeholder(s) at cursor open time.

• To declare a cursor as ’read-only’, an application specifies option as
CS_READ_ONLY. This means that the cursor cannot be used to
change values in the underlying server tables.

3-94 Routines

ct_cursor Open Client Release 10.0

• To declare a cursor ’for update’, an application specifies option as
CS_FOR_UPDATE. This means that the cursor can be used to change
values in the underlying server tables.

If some but not all of a cursor’s columns are for update, an appli-
cation must indicate which columns are for update by calling
ct_param once for each update column. If all of a cursor’s columns
are for update, an application does not have to call ct_param to
identify update columns.

For example, to indicate that the au_id and au_lname columns are
for update:

ct_cursor(cmd, CS_CURSOR_DECLARE, "au_cursor",
CS_NULLTERM, "select * from authors"
CS_NULLTERM, CS_FOR_UPDATE);

format.status = CS_UPDATECOL;

ct_param(cmd, &format, "au_id", CS_NULLTERM,
CS_UNUSED);

format.status = CS_UPDATECOL;

ct_param(cmd, &format, "au_lname", CS_NULLTERM,
CS_UNUSED);

ct_send(cmd);

To indicate that all columns returned by a cursor are for update:

ct_cursor(cmd, CS_CURSOR_DECLARE, “au_cursor”,
CS_NULLTERM, "select * from authors"
CS_NULLTERM, CS_FOR_UPDATE);

ct_send(cmd);

Client-Library Cursor Delete

• A ct_cursor(CS_CURSOR_DELETE) command deletes the current
cursor row from the cursor result set. The delete is propagated back
to the underlying server tables.

Client-Library Cursor Open

• A ct_cursor(CS_CURSOR_OPEN) command executes the body of a
Client-Library cursor, generating a CS_CURSOR_RESULT result set.
To access the cursor rows, an application processes the cursor
result set by calling ct_results, ct_bind, and ct_fetch.

Client-Library/C Reference Manual 3-95

Open Client Release 10.0 ct_cursor

• Some cursors require input parameter values at cursor open time.
An application can pass input parameter values for a cursor open
command by calling ct_param after calling ct_cursor. A cursor open
command requires parameters if any of the following are true:

- The body of the cursor is a SQL statement that contains host
variables.

- The body of the cursor is a stored procedure that requires input
parameter values.

- The body of the cursor is a dynamic SQL statement that contains
dynamic parameter markers.

• To open a cursor on a dynamic SQL prepared statement, specify
the same command structure used to dynamically declare the
cursor (ct_dynamic(CS_CURSOR_DECLARE)).

Dynamic SQL Cursor Option

• A ct_cursor(CS_CURSOR_OPTION) command sets Client-Library
cursor options (’read-only’ or ’for update’) for dynamic SQL
prepared statements.

Applications that declare a cursor on a dynamically prepared
SQL statement (ct_dynamic(CS_CURSOR_DECLARE)) must follow the
cursor declaration with a call to ct_cursor(CS_CURSOR_OPTION).
Unlike a Client-Library cursor declare command, the dynamic
SQL cursor declare command does not provide a way to specify
cursor options.

A dynamic SQL application declares a cursor on a prepared SQL
statement to make use of Client-Library cursor functionality.
Once an application calls ct_dynamic(CS_CURSOR_DECLARE), it
makes ct_cursor calls from that point onwards, beginning with
ct_cursor(CS_CURSOR_OPTION).

An application that uses ct_cursor to declare a cursor does not
need to use the cursor option command because the cursor
declare command (ct_cursor(CS_CURSOR_DECLARE)) provides a
way to specify cursor options (via the option parameter).
However, it is not illegal to follow a cursor declare command
with a cursor option command; the newly-specified option
simply replaces the option that was originally specified.

• To declare a cursor as ’read-only’, an application specifies option as
CS_READ_ONLY. This means that the cursor cannot be used to
change values in the underlying server tables.

3-96 Routines

ct_cursor Open Client Release 10.0

• To declare a cursor ’for update’, an application specifies option as
CS_FOR_UPDATE. This means that the cursor can be used to change
values in the underlying server tables.

If some but not all of a cursor’s columns are for update, an appli-
cation must indicate which columns are for update by calling
ct_param once for each update column. If all of a cursor’s columns
are for update, an application does not have to call ct_param to
identify update columns.

• An application can only specify cursor options before opening a
cursor.

Client-Library Cursor Rows

• A ct_cursor(CS_CURSOR_ROWS) command specifies the number of
rows that the server returns to Client-Library per internal fetch
request. Note that this is not the number of rows returned to an
application per ct_fetch call. The number of rows returned to an
application per ct_fetch call is determined by the value of the count
field in the CS_DATAFMT structures used in binding the cursor
result columns.

• An application can only set cursor rows before opening a cursor.

• The cursor rows setting defaults to one row.

Client-Library Cursor Update

• A ct_cursor(CS_CURSOR_UPDATE) command defines new column
values for the current cursor row. These new values are used to
update an underlying table.

• When updating a SQL Server table, an application must specify the
name of the table to update twice: once as the value of ct_cursor’s
*name parameter and a second time in the update statement itself
(update tablename ...).

• An application can update only a single table.

Example

/* DoCursor(connection) */

CS_STATIC CS_RETCODE
DoCursor(connection)
CS_CONNECTION *connection;

Client-Library/C Reference Manual 3-97

Open Client Release 10.0 ct_cursor

{
CS_RETCODE retcode;
CS_COMMAND *cmd;
CS_INT res_type;

/* Use the pubs2 database */
...CODE DELETED.....

/*
** Allocate a command handle to declare the
** cursor on.
*/
retcode = ct_cmd_alloc(connection, &cmd)
if (retcode != CS_SUCCEED)
{

ex_error("DoCursor: ct_cmd_alloc() failed");
return retcode;

}

/*
** Declare the cursor. SELECT is a select
** statement defined in the header file.
*/
retcode = ct_cursor (cmd, CS_CURSOR_DECLARE,

"cursor_a", CS_NULLTERM, SELECT, CS_NULLTERM,
CS_READ_ONLY);

if (retcode != CS_SUCCEED)
{

ex_error("DoCursor: ct_cursor(declare)
failed");
return retcode;

}

/* Set cursor rows to 10*/
retcode = ct_cursor (cmd, CS_CURSOR_ROWS, NULL,

CS_UNUSED, NULL, CS_UNUSED, (CS_INT)10);
if (retcode != CS_SUCCEED)
{

ex_error("DoCursor: ct_cursor(currows)
failed");

return retcode;
}

3-98 Routines

ct_cursor Open Client Release 10.0

/* Open the cursor */
retcode = ct_cursor (cmd, CS_CURSOR_OPEN, NULL,

CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED);
if (retcode != CS_SUCCEED)
{

ex_error("DoCursor: ct_cursor() failed");
return retcode;

}

/*
** Send (batch) the last 3 cursor commands to
** the server
*/
retcode = ct_send(cmd)
if (retcode != CS_SUCCEED)
{

ex_error("DoCursor: ct_send() failed");
return retcode;

}

/*
** Process the results. Loop while ct_results()
** returns CS_SUCCEED, and then check ct_result’s
** final return code to see if everything went ok.
*/
...CODE DELETED.....

/*
** Close and deallocate the cursor. Note that we
** don’t have to do this, since it is done
** automatically when the connection is closed.
*/
retcode = ct_cursor (cmd, CS_CURSOR_CLOSE, NULL,

CS_UNUSED, NULL, CS_UNUSED, CS_DEALLOC);
if (retcode != CS_SUCCEED)
{

ex_error("DoCursor: ct_cursor(dealloc)
failed");

return retcode;
}

/* Send the cursor command to the server */
retcode = ct_send(cmd)
if (retcode != CS_SUCCEED)
{

ex_error("DoCursor: ct_send() failed");
return retcode;

}

Client-Library/C Reference Manual 3-99

Open Client Release 10.0 ct_cursor

/*
** Check its results. The command won't generate
** fetchable results.
*/
...CODE DELETED.....

/* Drop the cursor's command structure */
...CODE DELETED.....

return retcode;
}

This code excerpt is from the csr_disp.c example program.

See Also

Cursors, ct_cmd_alloc, ct_keydata, ct_param, ct_results, ct_send

3-100 Routines

ct_data_info Open Client Release 10.0

ct_data_info

Function

Define or retrieve a data I/O descriptor structure.

Syntax

CS_RETCODE ct_data_info(cmd, action, colnum, iodesc)

CS_COMMAND *cmd;
CS_INT action;
CS_INT colnum;
CS_IODESC *iodesc;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

action – One of the following symbolic values:

colnum – The number of the text or image column whose I/O
descriptor is being retrieved.

If action is CS_SET, pass colnum as CS_UNUSED.

If action is CS_GET, colnum refers to the select-list id of the text or
image column. The first column in a select statement’s select-list
is column number 1, the second number 2, and so forth. An
application must select a text or image column before it can
update the column.

colnum must represent a text or image column.

iodesc – A pointer to a CS_IODESC structure. A CS_IODESC structure
contains information describing text or image data. For more infor-
mation on this structure, see ‘‘CS_IODESC Structure’’ on page 2-54.

Value of action: ct_data_info:

CS_SET Defines an I/O descriptor.

CS_GET Retrieves an I/O descriptor.

Table 3-41: Values for action (ct_data_info)

Client-Library/C Reference Manual 3-101

Open Client Release 10.0 ct_data_info

Returns

Comments

• ct_data_info defines or retrieves a CS_IODESC, also called an “I/O
descriptor structure,” for a text or image column.

• An application calls ct_data_info to retrieve an I/O descriptor after
calling ct_get_data to retrieve a text or image column value that it
plans to update at a later time. This I/O descriptor contains the text
pointer and text timestamp that the server uses to manage updates
to text or image columns.

After retrieving an I/O descriptor, a typical application changes
only the values of the locale, total_txtlen, and log_on_update fields
before using the I/O descriptor in an update operation:

- The total_txtlen field of the CS_IODESC represents the total length,
in bytes, of the new text or image value.

- The log_on_update field in the CS_IODESC to indicate whether or
not the server should log the update.

- The locale field of the CS_IODESC points to a CS_LOCALE structure
containing localization information for the value, if any.

• An application calls ct_data_info to define an I/O descriptor before
calling ct_send_data to send a chunk or image data to the server. Both
of these calls occur during a text or image update operation.

• A successful text or image update generates a parameter result set
that contains the new text timestamp for the text or image value. If
an application plans to update the text or image value a second
time, it must save this new text timestamp and copy it into the
CS_IODESC for the value before calling ct_data_info to define the
CS_IODESC for the update operation.

• It is illegal to call ct_data_info to retrieve the I/O descriptor for a
column before calling ct_get_data for the column.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-42: Return values (ct_data_info)

3-102 Routines

ct_data_info Open Client Release 10.0

However, this ct_get_data call does not have to actually retrieve
any data. That is, an application can call ct_get_data with a buflen
of 0, and then call ct_data_info to retrieve the descriptor. This
technique is useful when an application needs to determine the
length of a text or image value before retrieving it.

• For more information on the I/O descriptor structure, see
‘‘CS_IODESC Structure’’ on page 2-54.

• For more information on text and image, see ‘‘Text and Image’’ on
page 2-188.

Example

/*
** FetchResults()
**
** The result set contains four columns: integer, text,
** float, and integer.
*/

CS_STATIC CS_RETCODE
FetchResults(cmd, textdata)
CS_COMMAND *cmd;
TEXT_DATA *textdata;
{

CS_RETCODE retcode;
CS_DATAFMT fmt;
CS_INT firstcol;
CS_TEXT *txtptr;
CS_FLOAT floatitem;
CS_INT count;
CS_INT len;

/*
** All binds must be of columns prior to the columns
** to be retrieved by ct_get_data().
** To demonstrate this, bind the first column returned.
*/
...CODE DELETED.....

/* Retrieve and display the result */
while(((retcode = ct_fetch(cmd, CS_UNUSED, CS_UNUSED,

CS_UNUSED,&count)) == CS_SUCCEED) ||
(retcode == CS_ROW_FAIL))

{
/* Check for a recoverable error */
...CODE DELETED.....

/* Get the text data item in the 2nd column */
...CODE DELETED.....

Client-Library/C Reference Manual 3-103

Open Client Release 10.0 ct_data_info

/*
** Retrieve the descriptor of the text data. It is
** available while retrieving results of a select
** query. The information will be needed for later
** updates.
*/
retcode = ct_data_info (cmd, CS_GET, 2,

&textdata->iodesc);
if (retcode != CS_SUCCEED)
{

ex_error("FetchResults: cs_data_info()
failed");

return retcode;
}

/* Get the float data item in the 3rd column */
...CODE DELETED.....

/* Last column not retrieved */
}

/*
** We're done processing rows. Check the final return
** value of ct_fetch().
*/
...CODE DELETED.....

return retcode;
}

This code excerpt is from the getsend.c example program.

See Also

ct_get_data, ct_send_data, Text and Image

3-104 Routines

ct_debug Open Client Release 10.0

ct_debug

Function

Manage debug library operations.

Syntax

CS_RETCODE ct_debug(context, connection, operation,
flag, filename, fnamelen)

CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_INT operation;
CS_INT flag;
CS_CHAR *filename;
CS_INT fnamelen;

Parameters

context – A pointer to a CS_CONTEXT structure. A CS_CONTEXT structure
defines a Client-Library application context.

When operation is CS_SET_DBG_FILE, context must be supplied and
connection must be NULL.

When setting or clearing flags, use the chart in the flag parameter
section to determine whether or not to supply context.

connection – A pointer to a CS_CONNECTION structure. connection must
point to a valid CS_CONNECTION structure, but no actual
connection to a server is necessary in order to enable debug opera-
tions.

When operation is CS_SET_PROTOCOL_FILE, connection must be
supplied and context must be NULL.

When setting or clearing flags, see the chart in the flag parameter
section to determine whether or not to supply connection.

operation – The operation to perform. The table in the Summary of Param-
eters section lists the symbolic values that are legal for operation.

Client-Library/C Reference Manual 3-105

Open Client Release 10.0 ct_debug

flag – A bit mask representing debug subsystems. The following table
lists the symbolic values that can make up flag:

filename – The full path and name of the file to which ct_debug should
write the generated debug information.

fnamelen – The length, in bytes, of filename.

Value of flag: Requires: When the flag is enabled, Client-
Library:

CS_DBG_ALL context and
connection

Takes all possible debug actions.

CS_DBG_API_STATES context Prints information relating to Client-
Library function-level state
transitions.

CS_DBG_ASYNC context Prints function trace information each
time an asynchronous function starts
or completes.

CS_DBG_DIAG connection Prints message text whenever a
Client-Library or server message is
generated.

CS_DBG_ERROR context Prints trace information whenever a
Client-Library error occurs. This
allows a programmer to determine
exactly where an error is occurring.

CS_DBG_MEM context Prints information relating to
memory management.

CS_DBG_NETWORK context Prints information relating to Client-
Library’s network interactions.

CS_DBG_PROTOCOL connection Captures information exchanged with
a server in protocol-specific (for
example, TDS) format. This
information is not human readable.

CS_DBG_PROTOCOL_
STATES

connection Prints information relating to Client-
Library protocol-level state
transitions.

Table 3-43: Values for flag (ct_debug)

3-106 Routines

ct_debug Open Client Release 10.0

Summary of Parameters

Returns

Comments

• ct_debug manages debug library operations, allowing an
application to enable and disable specific diagnostic subsystems
and send the resultant trace information to files.

• ct_debug functionality is available only from within the debug
version of Client-Library. When called from within the standard
Client-Library, it returns CS_FAIL.

• Some debug flags can be enabled only at the connection level,
while others can be enabled only at the context level. The chart for
the flag parameter indicates the level at which each flag can be
enabled.

operation is: flag is: filename is: ct_debug:

CS_SET_FLAG supplied NULL Enables the subsystems specified
by flag.

CS_CLEAR_FLAG supplied NULL Disables the subsystems specified
by flag.

CS_SET_DBG_FILE CS_UNUSED supplied Records the name of the file to
which it will write character-
format debug information.

CS_SET_PROTOCOL_FILE CS_UNUSED supplied Records the name of the file to
which it will write protocol-form
debug information.

Table 3-44: Summary of parameters (ct_debug)

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-45: Return values (ct_debug)

Client-Library/C Reference Manual 3-107

Open Client Release 10.0 ct_debug

• If an application does not call ct_debug to specify debug files,
ct_debug writes character-format debug information to stdout and
protocol-form debug information to connect.dat in the application’s
working directory.

• When the debug version of Client-Library is linked in with an
application, the following behaviors automatically take place:

- Memory reference checks: Client-Library verifies that all
memory references, both internal and application-specific, are
valid.

- Data structure validation: each time a Client-Library function
accesses a data structure, Client-Library first validates the
structure.

- Special assertion checking: Client-Library checks that all array
references, including strings, are in bounds.

• Because the debug version of Client-Library performs extensive
internal checking, application performance will decrease when the
debug library is in use. The level of performance decrease depends
on the type and number of tracing subsystems that are enabled. To
minimize performance decrease, an application programmer can
selectively enable tracing subsystems, limiting heavy tracing to
problem areas of code.

• Use of the debug library will change the behavior of asynchronous
applications that are experiencing timing problems. In this case,
the use of external tracing tools (for example, a network protocol
analyzer) is recommended.

Example

...CODE DELETED.....
#ifdef EX_API_DEBUG

/*
** Enable this function right before any call to
** Client-Library that is returning failure.
*/
retcode = ct_debug (*context, NULL, CS_SET_FLAG,

CS_DBG_API_STATES, NULL, CS_UNUSED);
if (retcode != CS_SUCCEED)
{

ex_error("ex_init: ct_debug() failed");
}

#endif
...CODE DELETED.....

3-108 Routines

ct_debug Open Client Release 10.0

This code excerpt is from the exutils.c example program. For further
examples of using ct_debug, see the ex_alib.c, and ex_amain.c example
programs.

See Also

Error and Message Handling, Client-Library Messages, ct_callback, ct_con_alloc,
ct_diag

Client-Library/C Reference Manual 3-109

Open Client Release 10.0 ct_describe

ct_describe

Function

Return a description of result data.

Syntax

CS_RETCODE ct_describe(cmd, item, datafmt)

CS_COMMAND *cmd;
CS_INT item;
CS_DATAFMT *datafmt;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

item – An integer representing the result item of interest.

When retrieving a column description, item is the column’s
column number. The first column in a select statement’s select-list is
column number 1, the second number 2, and so forth.

When retrieving a compute column description, item is the
column number of the compute column. Compute columns are
returned in the order in which they are listed in the compute
clause. The first column returned is number 1.

When retrieving a return parameter description, item is the
parameter number of the parameter. The first parameter returned
by a stored procedure is number 1. Stored procedure return param-
eters are returned in the same order as the parameters were origi-
nally specified in the stored procedure’s create procedure statement.
This is not necessarily the same order as specified in the RPC
command that invoked the stored procedure. In determining what
number to pass as item do not count non-return parameters. For
example, if the second parameter in a stored procedure is the only
return parameter, pass item as 1.

When retrieving a stored procedure return status description,
item must be 1, as there can be only a single status in a return status
result set.

When retrieving format information, item takes a column or
compute column number.

3-110 Routines

ct_describe Open Client Release 10.0

➤ Note
An application cannot call ct_describe after ct_results indicates a result set of

type CS_MSG_RESULT. This is because a result type of CS_MSG_RESULT has

no data items associated with it. Parameters associated with a message are

returned as a CS_PARAM_RESULT result set.

Likewise, an application cannot call ct_describe after ct_results sets its

*result_type parameter to CS_CMD_DONE, CS_CMD_SUCCEED, or

CS_CMD_FAIL to indicate command status information.

datafmt – A pointer to a CS_DATAFMT structure. ct_describe fills *datafmt
with a description of the result data item referenced by item.

ct_describe fills in the following fields in the CS_DATAFMT:

Field name: For which types of result items? ct_describe sets the field to:

name Regular columns, column formats,
and return parameters.

The null-terminated name of the data item, if
any. A NULL name is indicated by a namelen of
0.

namelen Regular columns, column formats,
and return parameters.

The actual length of the name, not including the
null terminator.

0 to indicate a NULL name.

datatype Regular columns, column formats,
return parameters, return status,
compute columns, and compute
column formats.

A type constant (CS_xxx_TYPE) representing
the datatype of the item.

All type constants listed on the Types topics
page are valid, with the exceptions of
CS_VARCHAR_TYPE and
CS_VARBINARY_TYPE.

A return status has a datatype of CS_INT_TYPE.

A compute column’s datatype depends on the
type of the underlying column and the
aggregate operator that created the column.

format Not used.

maxlength Regular columns, column formats,
and return parameters.

The maximum possible length of the data for
the column or parameter.

Table 3-46: Fields in the CS_DATAFMT structure (ct_describe)

Client-Library/C Reference Manual 3-111

Open Client Release 10.0 ct_describe

scale Regular columns, column formats,
return parameters, compute columns,
or compute column formats of type
numeric or decimal.

The scale of the result data item.

precision Regular columns, column formats,
return parameters, compute columns,
or compute column formats of type
numeric or decimal.

The precision of the result data item.

status Regular columns and column
formats.

A bitmask of the following symbols, or-ed
together:

CS_CANBENULL to indicate that the column
can contain NULL values.

CS_HIDDEN to indicate that the column is a
“hidden” column that has been exposed. For
information on hidden columns, see “Hidden
Keys” on the Properties topics page.

CS_IDENTITY to indicate that the column is an
identity column.

CS_KEY to indicate the column is part of the key
for a table.

CS_VERSION_KEY to indicate the column is
part of the version key for the row.

CS_TIMESTAMP to indicate the column is a
timestamp column.

CS_UPDATABLE to indicate that the column is
an updatable cursor column.

count Regular columns, column formats,
return parameters, return status,
compute columns, and compute
column formats.

count represents the number of rows copied to
program variables per ct_fetch call.ct_describe
sets count to 1 to provide a default value in case
an application uses ct_describe’s return
CS_DATAFMT as ct_bind’s input
CS_DATAFMT.

usertype Regular columns, column formats,
and return parameters.

The SQL Server user-defined datatype of the
column or parameter, if any. usertype is set in
addition to (not instead of) datatype.

locale Regular columns, column formats,
return parameters, return status,
compute columns, and compute
column formats.

A pointer to a CS_LOCALE structure that
contains locale information for the data.

This pointer can be NULL.

Field name: For which types of result items? ct_describe sets the field to:

Table 3-46: Fields in the CS_DATAFMT structure (ct_describe) (continued)

3-112 Routines

ct_describe Open Client Release 10.0

Returns

Comments

• An application can use ct_describe to retrieve a description of a
regular result column, a return parameter, a stored procedure
return status number, or a compute column.

An application can also use ct_describe to retrieve format infor-
mation. Client-Library indicates that format information is
available by setting ct_results’ *result_type to CS_ROWFMT_RESULT
or CS_COMPUTEFMT_RESULT.

• An application cannot call ct_describe after ct_results sets its
*result_type parameter to CS_MSG_RESULT, CS_CMD_SUCCEED,
CS_CMD_DONE, or CS_CMD_FAIL. This is because, in these cases,
there are no result items to describe.

• An application can call ct_res_info to find out how many result items
are present in the current result set.

• An application generally needs to call ct_describe to describe a result
data item before it binds the result item to a program variable using
ct_bind.

• See the CS_DATAFMT topics page for a description of the
CS_DATAFMT structure.

• See the Results topics page for a description of result types.

Example

/* ex_fetch_data()*/

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

ct_describe returns CS_FAIL if item does not represent
a valid result data item.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-47: Return values (ct_describe)

Client-Library/C Reference Manual 3-113

Open Client Release 10.0 ct_describe

CS_RETCODE CS_PUBLIC
ex_fetch_data(cmd)
CS_COMMAND *cmd;
{

CS_RETCODE retcode;
CS_INT num_cols;
CS_INT i;
CS_INT j;
CS_INT row_count = 0;
CS_DATAFMT *datafmt;
EX_COLUMN_DATA *coldata;

/*
** Determine the number of columns in this result
** set
*/
...CODE DELETED...

for (i = 0; i < num_cols; i++)
{

/*
** Get the column description. ct_describe()
** fills the datafmt parameter with a
** description of the column.
*/
retcode = ct_describe(cmd, (i + 1),

&datafmt[i]);
if (retcode != CS_SUCCEED)
{

ex_error("ex_fetch_data: ct_describe()
failed");

break;
}

/* Now bind columns */
...CODE DELETED.....

}

/* Now fetch rows */
...CODE DELETED.....

return retcode;
}

This code excerpt is from the exutils.c example program. For further
examples of using ct_describe, see the compute.c, ex_alib.c, getsend.c, and
i18n.c example programs.

See Also

ct_bind, ct_fetch, ct_res_info, ct_results, Results

3-114 Routines

ct_diag Open Client Release 10.0

ct_diag

Function

Manage in-line error handling.

Syntax

CS_RETCODE ct_diag(connection, operation, type, index,
buffer)

CS_CONNECTION *connection;
CS_INT operation;
CS_INT type;
CS_INT index;
CS_VOID *buffer;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

operation – The operation to perform. The table in the Summary of Param-
eters section lists the symbolic values that are legal for operation.

type – Depending on the value of operation, type indicates either the
type of structure to receive message information, the type of
message on which to operate, or both. The following table lists the
symbolic values that are legal for type:

Value of type: To indicate:

SQLCA_TYPE A SQLCA structure.

SQLCODE_TYPE A SQLCODE structure, which is a long integer.

SQLSTATE_TYPE A SQLSTATE structure, which is an array of bytes.

CS_CLIENTMSG_TYPE A CS_CLIENTMSG structure. Also used to
indicate Client-Library messages.

CS_SERVERMSG_TYPE A CS_SERVERMSG structure. Also used to
indicate server messages.

CS_ALLMSG_TYPE Client-Library and server messages.

Table 3-48: Values for type (ct_diag)

Client-Library/C Reference Manual 3-115

Open Client Release 10.0 ct_diag

index – The index of the message of interest. The first message has an
index of 1, the second an index of 2, and so forth.

If type is CS_CLIENTMSG_TYPE, then index refers to Client-Library
messages only. If type is CS_SERVERMSG_TYPE, then index refers to
server messages only. If type is CS_ALLMSG_TYPE, then index refers
to Client-Library and server messages combined.

buffer – A pointer to data space.

Depending on the value of operation, buffer can point to a
structure or a CS_INT.

Summary of Parameters

Value of
operation: ct_diag: type is: index is: buffer is:

CS_INIT Initializes in-line
error handling.

CS_UNUSED CS_UNUSED NULL

CS_MSGLIMIT Sets the maximum
number of messages
to store.

CS_CLIENTMSG_TYPE to
limit Client-Library
messages only.

CS_SERVERMSG_TYPE to
limit server messages only.

CS_ALLMSG_TYPE to
limit the total number of
Client-Library and server
messages combined.

CS_UNUSED A pointer to
an integer
value.

CS_CLEAR Clears message
information for this
connection.

If buffer is not NULL
and type is not
CS_ALLMSG_TYPE,
ct_diag also clears the
*buffer structure by
initializing it with
blanks and/or
NULLs, as
appropriate.

One of the legal type values:

If type is
CS_CLIENTMSG_TYPE,
ct_diag clears Client-
Library messages only.

If type is
CS_SERVERMSG_TYPE,
ct_diag clears server
messages only.

If type has any other legal
value, ct_diag clears both
Client-Library and server
messages.

CS_UNUSED A pointer to
a structure
whose type
is defined
by type, or
NULL.

Table 3-49: Summary of parameters (ct_diag)

3-116 Routines

ct_diag Open Client Release 10.0

CS_GET Retrieves a specific
message.

Any legal type value except
CS_ALLMSG_TYPE.

If type is
CS_CLIENTMSG_TYPE, a
Client-Library message is
retrieved into a
CS_CLIENTMSG structure.

If type is
CS_SERVERMSG_TYPE, a
server message is retrieved
into a CS_SERVERMSG
structure.

If type has any other legal
value, then either a Client-
Library or server message
is retrieved.

The one-
based index
of the
message to
retrieve.

A pointer to
a structure
whose type
is defined
by type.

CS_STATUS Returns the current
number of stored
messages.

CS_CLIENTMSG_TYPE to
retrieve the number of
Client-Library messages.

CS_SERVERMSG_TYPE to
retrieve the number of
server messages.

CS_ALLMSG_TYPE to
retrieve the total number of
Client-Library and server
messages combined.

CS_UNUSED A pointer to
an integer
variable.

CS_EED_CMD Sets *buffer to the
address of the
CS_COMMAND
structure containing
extended error data.

CS_SERVERMSG_TYPE The one-
based index
of the
message for
which
extended
error data is
available.

A pointer to
a pointer
variable.

Value of
operation: ct_diag: type is: index is: buffer is:

Table 3-49: Summary of parameters (ct_diag) (continued)

Client-Library/C Reference Manual 3-117

Open Client Release 10.0 ct_diag

Returns

Common reasons for a ct_diag failure include:

• Invalid connection.

• Inability to allocate memory.

• Invalid parameter combination.

Comments

• A Client-Library application can handle Client-Library and server
messages in two ways:

- The application can call ct_callback to install client message and
server message callbacks to handle Client-Library and server
messages.

- The application can handle Client-Library and server messages
in-line, using ct_diag.

It is possible for an application to switch back and forth between
the two methods. For information on how to do this, see the
Errors and Messages topics page.

• ct_diag manages in-line message handling for a specific connection.
If an application has more than one connection, it must make
separate ct_diag calls for each connection.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

ct_diag returns CS_FAIL if the original error has made
the connection unusable.

CS_NOMSG The application attempted to retrieve a message whose
index is higher than the highest valid index. For
example, the application attempted to retrieve
message number 3, when there are only 2 messages
queued.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-50: Return values (ct_diag)

3-118 Routines

ct_diag Open Client Release 10.0

• An application cannot use ct_diag at the context level. That is, an
application cannot use ct_diag to retrieve messages generated by
routines that take a CS_CONTEXT (and no CS_CONNECTION) as a
parameter. These messages are unavailable to an application that is
using in-line error handling.

• An application can perform operations on either Client-Library
messages, server messages, or both.

For example, an application can clear Client-Library messages
without affecting server messages:

ct_diag(connection, CS_CLEAR, CS_CLIENTMSG,
CS_UNUSED, NULL);

• ct_diag allows an application to retrieve message information into
standard Client-Library structures (CS_CLIENTMSG and
CS_SERVERMSG) or a SQLCA, SQLCODE, or SQLSTATE. When
retrieving messages, ct_diag assumes that buffer points to a structure
of the type indicated by type.

An application that is retrieving messages into a SQLCA,
SQLCODE, or SQLSTATE must set the Client-Library property
CS_EXTRA_INF to CS_TRUE. This is because the SQL structures
require information that is not ordinarily returned by Client-
Library’s error handling mechanism.

An application that is not using the SQL structures can also set
CS_EXTRA_INF to CS_TRUE. In this case, the extra information is
returned as standard Client-Library messages.

• If ct_diag does not have sufficient internal storage space in which to
save a new message, it throws away all unread messages and stops
saving messages. The next time it is called with operation as CS_GET,
it returns a special message to indicate the space problem.

After returning this message, ct_diag starts saving messages
again.

Initializing In-Line Error Handling

• To initialize in-line error handling, an application calls ct_diag with
operation as CS_INIT.

• Generally, if a connection will use in-line error handling, an
application should call ct_diag to initialize in-line error handling for
a connection immediately after allocating it.

Client-Library/C Reference Manual 3-119

Open Client Release 10.0 ct_diag

Clearing Messages

• To clear message information for a connection, an application calls
ct_diag with operation as CS_CLEAR.

- To clear Client-Library messages only, an application passes type
as CS_CLIENTMSG_TYPE.

- To clear server messages only, an application passes type as
CS_SERVERMSG.

- To clear both Client-Library and server messages, pass type as
SQLCA, SQLCODE, or CS_ALLMSG_TYPE.

• If type is not CS_ALLMSG_TYPE:

- ct_diag assumes that buffer points to a structure of type type.

- ct_diag clears the *buffer structure by setting it to blanks and/or
NULLs, as appropriate.

• Message information is not cleared until an application explicitly
calls ct_diag with operations as CS_CLEAR. Retrieving a message
does not remove it from the message queue.

Retrieving Messages

• To retrieve message information, an application calls ct_diag with
operation as CS_GET, type as the type of structure in which to retrieve
the message, index as the one-based index of the message of
interest, and *buffer as a structure of the appropriate type.

• If type is CS_CLIENTMSG_TYPE, then index refers only to Client-
Library messages. If type is CS_SERVERMSG_TYPE, index refers only
to server messages. If type has any other value, index refers to the
collective “queue” of both types of messages combined.

• ct_diag fills in the *buffer structure with the message information.

• If an application attempts to retrieve a message whose index is
higher than the highest valid index, ct_diag returns CS_NOMSG to
indicate that no message is available.

• See the SQLCA, SQLCODE, CS_CLIENTMSG and CS_SERVERMSG topics
pages for information on these structures.

Limiting Messages

• Applications running on platforms with limited memory may
want to limit the number of messages that Client-Library saves.

3-120 Routines

ct_diag Open Client Release 10.0

• An application can limit the number of saved Client-Library
messages, the number of saved server messages, and the total
number of saved messages.

• To limit the number of saved messages, an application calls ct_diag
with operation as CS_MSGLIMIT and type as CS_CLIENTMSG_TYPE,
CS_SERVERMSG_TYPE, or CS_ALLMSG_TYPE:

- If type is CS_CLIENTMSG_TYPE, then the number of Client-Library
messages is limited.

- If type is CS_SERVERMSG_TYPE, then the number of server
messages is limited.

- If type is CS_ALLMSG_TYPE, then the total number of Client-
Library and server messages combined is limited.

• When a specific message limit is reached, Client-Library discards
any new messages of that type. When a combined message limit is
reached, Client-Library discards any new messages. If Client-
Library discards messages, it saves a message to this effect.

• An application cannot set a message limit that is less than the
number of messages currently saved.

• Client-Library’s default behavior is to save an unlimited number of
messages. An application can restore this default behavior by
setting a message limit of CS_NO_LIMIT.

Retrieving the Number of Messages

• To retrieve the number of current messages, an application calls
ct_diag with operation as CS_STATUS and type as the type of message
of interest.

Getting the CS_COMMAND for Extended Error Data

• To retrieve a pointer to the CS_COMMAND structure containing
extended error data (if any), call ct_diag with operation as
CS_EED_CMD and type as CS_SERVERMSG_TYPE. ct_diag sets *buffer to
the address of the CS_COMMAND structure containing the extended
error data.

• When an application retrieves a server message into a
CS_SERVERMSG structure, Client-Library indicates that extended
error data is available for the message by setting the CS_HASEED bit
in the status field in the CS_SERVERMSG structure.

• It is an error to call ct_diag with operation as CS_EED_CMD when
extended error data is not available.

Client-Library/C Reference Manual 3-121

Open Client Release 10.0 ct_diag

• For more information on extended error data, see ‘‘Extended Error
Data’’ on page 2-79.

Sequenced Messages and ct_diag

• If an application is using sequenced error messages, ct_diag acts on
message chunks instead of messages. This has the following
effects:

- A ct_diag(CS_GET) call with index i returns the i’th message chunk,
not the i’th message.

- A ct_diag(CS_MSGLIMIT) call limits the number of chunks, not the
number of messages, that Client-Library will store.

- A ct_diag(CS_STATUS) call returns the number of currently-stored
chunks, not the number of currently-stored messages.

• For more information on sequenced messages, see ‘‘Sequencing
Long Messages’’ on page 2-77.

See Also

Error and Message Handling, Client-Library Messages, ct_callback, ct_options

3-122 Routines

ct_dynamic Open Client Release 10.0

ct_dynamic

Function

Initiate a prepared dynamic SQL statement command.

Syntax

CS_RETCODE ct_dynamic(cmd, type, id, idlen, buffer,
buflen)

CS_COMMAND *cmd;
CS_INT type;
CS_CHAR *id;
CS_INT idlen;
CS_CHAR *buffer;
CS_INT buflen;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

type – The type of dynamic SQL command to initiate. The table in the
Summary of Parameters sections lists the symbolic values that are legal
for type.

id – A pointer to the statement identifier. This identifier is defined by
the application and must conform to server standards.

idlen – The length, in bytes, of *id. If *id is null-terminated, pass idlen as
CS_NULLTERM. If id is NULL, pass idlen as CS_UNUSED.

buffer – A pointer to data space.

buflen – The length, in bytes, of *buffer. If *buffer is null-terminated, pass
buflen as CS_NULLTERM. If buffer is NULL, pass buflen as CS_UNUSED.

Client-Library/C Reference Manual 3-123

Open Client Release 10.0 ct_dynamic

Summary of Parameters

Returns

Value of type: ct_dynamic: *id is: *buffer is:

CS_CURSOR_DECLARE Declares a cursor on a previously-
prepared SQL statement.

The prepared
statement
identifier.

The cursor
name.

CS_DEALLOC De-allocates a prepared SQL
statement.

The prepared
statement
identifier.

NULL

CS_DESCRIBE_INPUT Retrieves input parameter
information. An application can
access this information via
ct_describe or via ct_dyndesc.

The prepared
statement
identifier.

NULL

CS_DESCRIBE_OUTPUT Retrieves column list information.
An application can access this
information via ct_describe or via
ct_dyndesc.

The prepared
statement
identifier.

NULL

CS_EXECUTE Executes a prepared SQL statement
that requires zero or more
parameters.

The prepared
statement
identifier.

NULL

CS_EXEC_IMMEDIATE Execute a literal SQL statement. NULL The SQL
statement to
execute.

CS_PREPARE Prepares a SQL statement. The prepared
statement
identifier.

The SQL
statement to
prepare.

Table 3-51: Summary of parameters (ct_dynamic)

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-52: Return values (ct_dynamic)

3-124 Routines

ct_dynamic Open Client Release 10.0

Comments

• Initiating a command is the first step in sending it to a server.

• Sending a command to a server is a four step process. To send a
command to a server, an application must:

- Initiate the command by calling ct_dynamic. This routine sets up
internal structures that are used in building a command stream
to send to the server.

- Pass parameters for the command, if required. Most applications
will pass parameters by calling ct_param once for each parameter
that the command requires, but it is also possible to pass
parameters for a command by using ct_dyndesc.

- Send the command to the server by calling ct_send.

- Verify the success of the command by calling ct_results.

This last step does not imply that an application need only call
ct_results once. If the value of ct_results’ result_type parameter
indicates that there are fetchable results, the application will
most likely process the results using a loop controlled by
ct_results. See the Open Client Client-Library/C Programmer’s Guide
for a discussion of processing results.

About Prepared Statements

• A prepared SQL statement is a SQL statement which is compiled
and stored by a server. Each prepared statement is associated with
a unique identifier.

• An application can prepare an unlimited number of statements,
but identifiers for prepared statements must be unique within a
connection.

• Although the command structure used to prepare a statement can
be different from the one used to execute it, both of the command
structures must belong to the same connection.

• If a prepared statement is a Transact-SQL command containing
host variables, each variable must begin with a colon (:).

• If a prepared statement requires parameters, they are passed using
ct_param or ct_dyndesc at execute time.

• Once a statement is successfully prepared, it can be executed
repeatedly until it is de-allocated.

• For more information on dynamic SQL, see the Dynamic SQL topics
page.

Client-Library/C Reference Manual 3-125

Open Client Release 10.0 ct_dynamic

Preparing a Statement

• To initiate a command to prepare a statement, an application calls
ct_dynamic with type as CS_PREPARE.

Declaring a Cursor on a Prepared Statement

• To initiate a command to declare a cursor on a prepared statement,
an application calls ct_dynamic with type as CS_CURSOR_DECLARE.

• An application must declare a cursor on a prepared statement
prior to executing the prepared statement.

Setting Options

• After declaring a cursor on a prepared statement, an application
can call ct_cursor(CS_CURSOR_OPTION) to set options (‘readonly’ and
‘for update’) for the cursor.

Getting a Description of Prepared Statement Input

• To initiate a command to get a description of prepared statement
input parameters, an application calls ct_dynamic with type as
CS_DESCRIBE_INPUT.

• An application typically retrieves a description of prepared
statement input parameters before passing input values to a
prepared statement.

• For information on how to access the information returned as the
result of a CS_DESCRIBE_INPUT command, see “Getting a
Description of Prepared Statement Input,” on the Dynamic SQL
topics page.

Getting a Description of Prepared Statement Output

• To initiate a command to get a description of prepared statement
output columns, an application calls ct_dynamic with type as
CS_DESCRIBE_OUTPUT.

• For information on how to access the information returned as the
result of a CS_DESCRIBE_OUTPUT command, see “Getting a
Description of Prepared Statement Output,” on the Dynamic SQL
topics page.

3-126 Routines

ct_dynamic Open Client Release 10.0

Executing a Prepared Statement

• To initiate a command to execute a prepared statement, an
application calls ct_dynamic with type as CS_EXECUTE.

Executing a Literal Statement

• To initiate a command to execute a literal SQL statement, an
application calls ct_dynamic with type as CS_EXEC_IMMEDIATE.

De-allocating a Prepared Statement

• To initiate a command to de-allocate a prepared statement, an
application calls ct_dynamic with type as CS_DEALLOC.

See Also

Dynamic SQL, ct_dyndesc, ct_param, ct_send

Client-Library/C Reference Manual 3-127

Open Client Release 10.0 ct_dyndesc

ct_dyndesc

Function

Perform operations on a dynamic SQL descriptor area.

Syntax

CS_RETCODE ct_dyndesc(cmd, descriptor, desclen,
operation, index, datafmt, buffer,
buflen, copied, indicator)

CS_COMMAND *cmd;
CS_CHAR *descriptor;
CS_INT desclen;
CS_INT operation;
CS_INT index;
CS_DATAFMT *datafmt;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *copied;
CS_SMALLINT *indicator;

Parameters

cmd – A pointer to a CS_COMMAND structure. Any CS_COMMAND in the
same context in which a descriptor is allocated can be used to
operate on the descriptor.

descriptor – A pointer to the name of the descriptor. Descriptor names
must be unique within a connection.

desclen – The length, in bytes, of *descriptor. If *descriptor is null-termi-
nated, pass desclen as CS_NULLTERM.

operation – The descriptor operation to initiate. The following table lists
the values that are legal for operation:

Value of operation: ct_dyndesc:

CS_ALLOC Allocates a descriptor.

CS_DEALLOC De-allocates a descriptor.

CS_GETATTR Retrieves a parameter or result item’s attributes.

CS_GETCNT Retrieves the number of parameters or columns.

Table 3-53: Values for operation (ct_dyndesc)

3-128 Routines

ct_dyndesc Open Client Release 10.0

index – When used, an integer variable.

Depending on the value of operation, index can be either the zero-
based index of a descriptor item or the number of items
associated with a descriptor.

datafmt – When used, a pointer to a CS_DATAFMT structure.

buffer – When used, a pointer to data space.

buflen – When used, buflen is the length, in bytes, of the *buffer data.

copied – When used, a pointer to an integer variable. ct_dyndesc sets
*copied to the length, in bytes, of the data placed in *buffer.

indicator – When used, a pointer to an indicator variable.

The following table lists the possible values of *indicator:

CS_SETATTR Sets a parameter’s attributes.

CS_SETCNT Sets the number of parameters or columns.

CS_USE_DESC Associates a descriptor with a statement or a command
structure.

Value of operation: Value of *indicator: To Indicate:

CS_GETATTR -1 Truncation of a server value by
Client-Library.

0 No truncation.

integer value Truncation of an application value
by the server.

CS_SETATTR -1 The parameter has a null value.

Table 3-54: Values for indicator (ct_dyndesc)

Value of operation: ct_dyndesc:

Table 3-53: Values for operation (ct_dyndesc)

Client-Library/C Reference Manual 3-129

Open Client Release 10.0 ct_dyndesc

Returns

Comments

• A dynamic SQL descriptor area contains information about the
input parameters to a dynamic SQL statement or the result data
items generated by the execution of a dynamic SQL statement.

• Although ct_dyndesc takes a CS_COMMAND structure as a parameter,
the scope of a dynamic SQL descriptor area is a Client-Library
context. That is:

- Descriptor names must be unique within a context.

- An application can use any command structure within a context
to reference the context’s descriptor areas. For example, a
descriptor area allocated through one command structure can be
de-allocated by another command structure within the same
context.

• For more information about dynamic SQL, see the Dynamic SQL
topics page.

Allocating a Descriptor

• To allocate a descriptor, an application calls ct_dyndesc with
operation as CS_ALLOC.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_ROW_FAIL A recoverable error occurred. Recoverable errors
include conversion errors that occur while copying
values to program variables as well as memory
allocation failures.

CS_CANCELED The dynamic SQL operation was canceled.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-55: Return values (ct_dyndesc)

3-130 Routines

ct_dyndesc Open Client Release 10.0

• The following table lists parameter values for CS_ALLOC
operations:

De-allocating a Descriptor

• To de-allocate a descriptor, an application calls ct_dyndesc with
operation as CS_DEALLOC.

• The following table lists parameter values for CS_DEALLOC
operations:

Retrieving a Parameter or Result Item’s Attributes

• To retrieve a parameter’s or a result data item’s attributes, an
application calls ct_dyndesc with operation as CS_GETATTR.

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator:

The name of the descriptor
to allocate,
the length of the name or
CS_NULLTERM.

The maximum number
of items that the
descriptor will
accommodate.

NULL NULL,
CS_UNUSED

NULL NULL

Table 3-56: Parameter values for CS_ALLOC operations

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator:

The name of the descriptor to de-
allocate,
the length of the name or
CS_NULLTERM.

CS_UNUSED NULL NULL,
CS_UNUSED

NULL NULL

Table 3-57: Parameter values for CS_DEALLOC operations

Client-Library/C Reference Manual 3-131

Open Client Release 10.0 ct_dyndesc

• The following table lists parameter values for CS_GETATTR
operations:

• An application needs to set the *datafmt fields for a CS_GETATTR
operation exactly as they would be set for a ct_bind call. The
following table lists the fields that are used:

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator:

The name of the
descriptor of
interest,
the length of the
name or
CS_NULLTERM.

The
number of
the item
whose
description
is being
requested.

As an input
parameter,
*datafmt
describes
*buffer.

ct_dyndesc
overwrites
*datafmt with
a description
of the item.

If supplied, *buffer is
set to the value of
the item.

If buffer is NULL,
only a description
of the item is
returned.

buflen must be
CS_UNUSED.

datafmt→maxlength
describes *buffer’s
length.

If supplied,
*copied is set
to the
number of
bytes placed
in *buffer.

Can be
NULL.

If supplied,
*indicator is
set to the
value of the
item’s
indicator.

Can be
NULL.

Table 3-58: Parameter values for CS_GETATTR operations

Field name: Set the field to:

datatype The datatype of the buffer variable.

format A bit-mask of format symbols.

maxlength The length of the buffer data space.

scale The scale of a numeric or decimal buffer; ignored for all
other datatypes.

precision The precision of a numeric or decimal buffer; ignored for
all other datatypes.

count 0 or 1

locale A pointer to a valid CS_LOCALE structure or NULL.

All other fields Are ignored.

Table 3-59: CS_DATAFMT fields to set for CS_GETATTR operations

3-132 Routines

ct_dyndesc Open Client Release 10.0

• ct_dyndesc(CS_GETATTR) sets the *datafmt fields exactly as ct_describe
would set them. The following table lists the fields in *datafmt that
ct_dyndesc sets:

Field name: ct_dyndesc sets the field to:

name The null-terminated name of the data item, if any. A NULL
name is indicated by a namelen of 0.

namelen The actual length of the name, not including the null
terminator.

0 to indicate a NULL name.

datatype The datatype of the item. All datatypes listed on the types
topics page are valid, with the exceptions of
CS_VARCHAR and CS_VARBINARY.

maxlength The maximum possible length of the data for the column
or parameter.

scale The scale of the result data item.

precision The precision of the result data item.

status A bitmask of the following symbols, or-ed together:

CS_CANBENULL to indicate that the column can contain
NULL values.

CS_HIDDEN to indicate that the column is a “hidden”
column that has been exposed. For information on hidden
columns, see “Hidden Keys” on the Properties topics page.

CS_IDENTITY to indicate that the column is an identity
column.

CS_KEY to indicate the column is part of the key for a
table.

CS_VERSION_KEY to indicate the column is part of the
version key for the row.

CS_TIMESTAMP to indicate the column is a timestamp
column.

CS_UPDATABLE to indicate that the column is an
updatable cursor column.

count count represents the number of rows copied to program
variables per ct_fetch call.ct_dyndesc sets count to 1 to
provide a default value in case an application uses
ct_dyndesc’s return CS_DATAFMT as ct_bind’s input
CS_DATAFMT.

Table 3-60: CS_DATAFMT fields set during CS_GETATTR operations

Client-Library/C Reference Manual 3-133

Open Client Release 10.0 ct_dyndesc

Retrieving the Number of Parameters or Columns

• To retrieve the number of parameters or result items a descriptor
can describe, an application calls ct_dyndesc with operation as
CS_GETCNT.

• ct_dyndesc sets *buffer to the number of dynamic parameter
specifications or the number of columns in the dynamic SQL
statement’s select list, depending on whether input parameters or
output columns are being described.

• The following table lists parameter values for CS_GETCNT
operations:

Setting a Parameter’s Attributes

• To set a parameter’s attributes, an application calls ct_dyndesc with
operation as CS_SETATTR.

usertype The SQL Server user-defined datatype of the column or
parameter, if any. usertype is set in addition to (not instead
of) datatype.

locale A pointer to a CS_LOCALE structure that contains locale
information for the data.

This pointer can be NULL.

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator:

The name of the
descriptor of
interest,
the length of the
name or
CS_NULLTERM.

CS_UNUSED NULL A pointer to a
CS_INT,
CS_UNUSED.

If supplied,
*copied is set to
the number of
bytes placed in
*buffer.

Can be NULL.

NULL

Table 3-61: Parameter values for CS_GETCNT operations

Field name: ct_dyndesc sets the field to:

Table 3-60: CS_DATAFMT fields set during CS_GETATTR operations (continued)

3-134 Routines

ct_dyndesc Open Client Release 10.0

• The following table lists parameter values for CS_SETATTR
operations:

• An application needs to set the *datafmt fields for a CS_SETATTR
operation exactly as they would be set for a ct_param call. The
following table lists the fields that are used:

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator:

The name of the
descriptor of
interest,
the length of the
name or
CS_NULLTERM.

The
number of
the item
whose
description
is being
set.

*datafmt
contains a
description
of the item.

A pointer to the
value of the item,
the length of the
value.

Pass buflen as
CS_UNUSED if
buffer points to a
fixed-length type.

NULL If supplied, *indicator
is the value of the
item’s indicator.

If *indicator is -1 then
buffer is ignored and
the value of the item
is set to NULL.

indicator can be
NULL.

Table 3-62: Parameter values for CS_SETATTR operations

Field name: Set the field to:

name The name of the parameter.

namelen The length of the name or CS_NULLTERM.

datatype The datatype of the item being set.

maxlength For variable-length return parameters, maxlength is the
maximum number of bytes to be returned for this
parameter.

maxlength is ignored if status is CS_INPUTVALUE or if
datatype represents a fixed-length type.

status CS_INPUTVALUE, CS_UPDATECOL, or CS_RETURN.

CS_UPDATECOL indicates an update column for a cursor
declare command.

CS_RETURN indicates a return parameter.

locale A pointer to a valid CS_LOCALE structure or NULL.

All other fields Are ignored.

Table 3-63: CS_DATAFMT fields for CS_SETATTR operations

Client-Library/C Reference Manual 3-135

Open Client Release 10.0 ct_dyndesc

Setting the Number of Parameters or Columns

• To set the number of parameters or columns a descriptor can
describe, an application calls ct_dyndesc with operation as CS_SETCNT.

• The following table lists parameter values for CS_SETCNT
operations:

Associating a Descriptor with a Statement or Command Structure

• To associate a descriptor with a prepared statement or command
structure, an application calls ct_dyndesc with operation as
CS_USE_DESC.

• The following table lists parameter values for CS_USE_DESC
operations:

• Descriptor areas are normally associated with a context structure.
When a descriptor area is used to describe input to or output from
a cursor, however, it must first be associated with the command
structure which opened the cursor.

• When using a descriptor to describe cursor input, a typical
application’s sequence of calls is:

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator:

The name of the descriptor
to allocate,
the length of the name or
CS_NULLTERM.

The new descriptor
count.

NULL NULL,
CS_UNUSED

NULL NULL

Table 3-64: Parameter values for CS_SETCNT operations

descriptor,
desclen:

index: datafmt: buffer,
buflen:

copied: indicator:

The name of the descriptor to allocate,
the length of the name or
CS_NULLTERM.

CS_UNUSED NULL NULL,
CS_UNUSED

NULL NULL

Table 3-65: Parameter Values for CS_USE_DESC operations

3-136 Routines

ct_dyndesc Open Client Release 10.0

ct_dyndesc(CS_ALLOC)
ct_dyndesc(CS_SETCNT)
for each input value:

ct_dyndesc(CS_SETATTR)
end for
ct_cursor to open the cursor
ct_dyndesc(CS_USE_DESC)
ct_send

See Also

ct_cursor, ct_dynamic, ct_fetch

Client-Library/C Reference Manual 3-137

Open Client Release 10.0 ct_exit

ct_exit

Function

Exit Client-Library.

Syntax

CS_RETCODE ct_exit(context, option)

CS_CONTEXT *context;
CS_INT option;

Parameters

context – A pointer to a CS_CONTEXT structure.

context identifies the Client-Library context being exited.

option – ct_exit can behave in different ways, depending on the value
specified for option. The following table lists the symbolic values
that are legal for option:

Returns

Value of option: Behavior of ct_exit:

CS_UNUSED ct_exit closes all open connections for which no results
are pending and terminates Client-Library for this
context. If results are pending on one or more
connections, ct_exit returns CS_FAIL and does not
terminate Client-Library.

CS_FORCE_EXIT ct_exit closes all open connections for this context,
whether or not any results are pending, and terminates
Client-Library for this context.

Table 3-66: Values for option (ct_exit)

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Table 3-67: Return values (ct_exit)

3-138 Routines

ct_exit Open Client Release 10.0

Comments

• ct_exit terminates Client-Library for a specific context. It closes all
open connections, de-allocates internal data space and cleans up
any platform-specific initialization.

• ct_exit must be the last Client-Library routine called within an
Client-Library context.

• If an application finds it needs to call Client-Library routines after
it has called ct_exit, it can re-initialize Client-Library by calling ct_init
again.

• If results are pending on any of the context’s connections and option
is not passed as CS_FORCE_EXIT, ct_exit returns CS_FAIL. This means
that Client-Library is not correctly terminated and that the
application must call ct_exit again after handling the connections’
pending results.

• ct_exit always completes synchronously, even if asynchronous
network I/O has been specified for any of the context’s
connections.

• An application can call ct_close to close a single connection.

• If ct_init is called for a context, it is an error to de-allocate the context
before calling ct_exit.

Example

/*
** ex_ctx_cleanup()
**
** Parameters:
** context Pointer to context structure.
** status Status of last interaction with Client-
** Library.
** If not ok, this routine will perform a
** force exit.
**
** Returns:
** Result of function calls from Client-Library.
*/

CS_RETCODE CS_PUBLIC
ex_ctx_cleanup(context, status)
CS_CONTEXT* context;
CS_RETCODE status;
{

CS_RETCODE retcode;
CS_INT exit_option;

Client-Library/C Reference Manual 3-139

Open Client Release 10.0 ct_exit

exit_option = (status != CS_SUCCEED) ? CS_FORCE_EXIT :
CS_UNUSED;

retcode = ct_exit (context, exit_option);
if (retcode != CS_SUCCEED)
{

ex_error("ex_ctx_cleanup: ct_exit() failed");
return retcode;

}
retcode = cs_ctx_drop(context);
if (retcode != CS_SUCCEED)
{

ex_error("ex_ctx_cleanup: cs_ctx_drop() failed");
return retcode;

}
return retcode;

}

This code excerpt is from the exutils.c example program. For another
example of using ct_exit, see the ex_amain.c example program.

See Also

ct_close, ct_init

3-140 Routines

ct_fetch Open Client Release 10.0

ct_fetch

Function

Fetch result data.

Syntax

CS_RETCODE ct_fetch(cmd, type, offset, option,
rows_read)

CS_COMMAND *cmd;
CS_INT type;
CS_INT offset;
CS_INT option;
CS_INT *rows_read;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

type – This parameter is currently unused and must be passed as
CS_UNUSED in order to ensure compatibility with future versions of
Client-Library.

offset –This parameter is currently unused and must be passed as
CS_UNUSED in order to ensure compatibility with future versions of
Client-Library.

option – This parameter is currently unused and must be passed as
CS_UNUSED in order to ensure compatibility with future versions of
Client-Library.

rows_read – A pointer to an integer variable. ct_fetch sets rows_read to the
number of rows read by the ct_fetch call.

rows_read is an optional parameter intended for use by applica-
tions using array binding.

Client-Library/C Reference Manual 3-141

Open Client Release 10.0 ct_fetch

Returns

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

ct_fetch places the number of rows read in *rows_read.

The application must continue to call ct_fetch, as the
result data is not yet completely fetched.

CS_END_DATA All rows of the current result set have been fetched.

The application should call ct_results to get the next
result set.

CS_ROW_FAIL A recoverable error occurred while fetching a row.

Recoverable errors include memory allocation failures
and conversion errors that occur while copying row
values to program variables.

An application can continue calling ct_fetch to keep
retrieving rows, or can call ct_cancel to cancel the
remaining results.

ct_fetch places the number of rows fetched in
*rows_read. This number includes the row on which the
error occurred.

The application must continue to call ct_fetch, as the
result data is not yet completely fetched.

CS_FAIL The routine failed.

ct_fetch places the number of rows fetched in
*rows_read. This number includes the failed row.

Unless the routine failed due to application error (for
example, bad parameters), additional result rows are
not available.

If ct_fetch returns CS_FAIL, an application must call
ct_cancel with type as CS_CANCEL_ALL before using
the affected command structure to send another
command.

If ct_cancel returns CS_FAIL, the application must call
cs_close(CS_FORCE_CLOSE) to force the connection
closed.

CS_CANCELED The current result set and any additional result sets
have been canceled. Data is no longer available.

ct_fetch places the number of rows fetched before the
cancel occurred in *rows_read.

Table 3-68: Return values (ct_fetch)

3-142 Routines

ct_fetch Open Client Release 10.0

A common reason for a ct_fetch failure is that a program variable
specified via ct_bind is not large enough for a fetched data item.

Comments

• “Result data” is an umbrella term for all the types of data that a
server can return to an application. These types of data include:

- Regular rows.

- Cursor rows.

- Return parameters. Types of data that are returned as parameters
include message parameters, stored procedure return
parameters, extended error data, and registered procedure
notification parameters.

- Stored procedure status numbers.

- Compute rows.

ct_fetch is used to fetch all of these types of data.

• Conceptually, result data is returned to an application in the form
of one or more rows that make up a “result set”.

Regular row and cursor row result sets can contain more than
one row. For example, a regular row result set might contain a
hundred rows.

If array binding has been specified for the data items in a regular
row or cursor row result set, then multiple rows can be fetched
with a single call to ct_fetch.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the Asynchronous Programming topics
page.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Returns: To Indicate:

Table 3-68: Return values (ct_fetch) (continued)

Client-Library/C Reference Manual 3-143

Open Client Release 10.0 ct_fetch

➤ Note
Asynchronous applications should always specify array binding to fetch

multiple rows at a time. This ensures that the application has sufficient time in

which to accomplish something before Client-Library calls the application’s

completion callback routine.

Return parameter, status number, and compute row result sets,
however, only contain a single “row.” For this reason, even if
array binding is specified, only a single row of data is fetched.

• ct_results sets *result_type to indicate the type of result available.
ct_results must indicate a result type of CS_ROW_RESULT,
CS_CURSOR_RESULT, CS_PARAM_RESULT, CS_STATUS_RESULT, or
CS_COMPUTE_RESULT before an application calls ct_fetch.

• After calling ct_results, an application can:

- Process the result set by binding the result items and fetching the
data. (A typical application will call ct_describe to get data
descriptions, ct_bind to bind result items, ct_fetch to fetch result
rows, and ct_get_data, if the result set contains large text or image
values. However, an application can also use ct_fetch and
ct_dyndesc to process a result set.)

- Discard the result set, using ct_cancel.

• If an application does not cancel a result set, it must completely
process the result set by calling ct_fetch as long as ct_fetch continues
to indicate that rows are available.

The simplest way to do this is in a loop that terminates when
ct_fetch fails to return either CS_SUCCEED or CS_ROW_FAIL. After
the loop terminates, an application can use a switch-type
statement against ct_fetch’s final return code to find out what
caused the termination.

If a result set contains zero rows, an application’s first ct_fetch call
will return CS_END_DATA.

➤ Note
An application must call ct_fetch in a loop even if a result set contains only a

single row. An application must call ct_fetch until it fails to return either

CS_SUCCEED or CS_ROW_FAIL.

3-144 Routines

ct_fetch Open Client Release 10.0

• If a conversion error occurs when retrieving a result item, the rest
of the items in the row are retrieved. If truncation occurs, the
indicator variable, if any, provided in the application’s ct_bind call
for this item is set to the actual length of the result data.

ct_fetch returns CS_ROW_FAIL if a conversion or truncation error
occurs.

Fetching Regular Rows and Cursor Rows

• Regular rows and cursor rows can be fetched one row at a time, or
several rows at once.

• An application indicates the number of rows to be fetched per
ct_fetch call via the datafmt→count field in its ct_bind calls that bind
result columns to program variables. If datafmt→count is 0 or 1,
each call to ct_fetch fetches one row. If datafmt→count is greater than
one, then array binding is considered to be in effect and each call to
ct_fetch fetches datafmt→count rows. (Note that datafmt→count must
have the same value for all ct_bind calls for a result set.)

• When fetching multiple rows, if a conversion error occurs on one of
the rows, no more rows are retrieved by this ct_fetch call.

Fetching Return Parameters

• Several types of data can be returned to an application as a
parameter result set, including:

- Stored procedure return parameters

- Message parameters

• Extended error data and registered procedure notification
parameters are also returned as parameter result sets, but since an
application does not call ct_results to process these types of data, the
application never sees a result type of CS_PARAM_RESULT. Instead,
the row of parameters is simply available to be fetched after the
application retrieves the CS_COMMAND structure containing the
data.

• A return parameter result set consists of a single row with a
number of columns equal to the number of return parameters.

Fetching a Return Status

• A stored procedure return status result set consists of a single row
with a single column, the status number.

Client-Library/C Reference Manual 3-145

Open Client Release 10.0 ct_fetch

Fetching Compute Rows

• Compute rows result from the compute clause of a select statement.

• A compute row result set consists of a single row with a number of
columns equal to the number of aggregate operators in the compute
clause that generated the row.

• Each compute row is considered to be a distinct result set.

Example

/* ex_fetch_data()*/

CS_RETCODE CS_PUBLIC
ex_fetch_data(cmd)
CS_COMMAND *cmd;
{

CS_RETCODE retcode;
CS_INT num_cols;
CS_INT i;
CS_INT j;
CS_INT row_count = 0;
CS_INT rows_read;

/*
** Determine the number of columns in this
** result set.
*/
...CODE DELETED.....

/* Get column descriptions and bind columns */
...CODE DELETED.....

/*
** Fetch the rows. Loop while ct_fetch() returns
** CS_SUCCEED or CS_ROW_FAIL
*/
while (((retcode = ct_fetch (cmd, CS_UNUSED,

CS_UNUSED, CS_UNUSED,&rows_read)) ==
CS_SUCCEED) || (retcode == CS_ROW_FAIL))

{
/*
** Increment our row count by the number of
** rows just fetched.
*/
row_count = row_count + rows_read;

3-146 Routines

ct_fetch Open Client Release 10.0

/* Check if we hit a recoverable error */
if (retcode == CS_ROW_FAIL)
{

fprintf(stdout, "Error on row %d.\n",
row_count);

}

/*
** We have a row. Loop through the columns
** displaying the column values.
*/
for (i = 0; i < num_cols; i++)
{

...CODE DELETED.....
}
fprintf(stdout, "\n");

}

/* Free allocated space */
...CODE DELETED.....

/*
** We're done processing rows. Let's check the
** final return value of ct_fetch().
*/
switch ((int)retcode)
{

case CS_END_DATA:
/* Everything went fine */
fprintf(stdout, "All done processing

rows.\n");
retcode = CS_SUCCEED;
break;

case CS_FAIL:
/* Something terrible happened */
ex_error("ex_fetch_data: ct_fetch()

failed");
return retcode;
break;

default:
/* We got an unexpected return value */
ex_error("ex_fetch_data: ct_fetch() \

returned an unexpected retcode");
return retcode;
break;

}

return retcode;
}

Client-Library/C Reference Manual 3-147

Open Client Release 10.0 ct_fetch

This code excerpt is from the exutils.c example program. For further
examples of using ct_fetch, see the compute.c, ex_alib.c,getsend.c, and
i18n.c example programs.

See Also

ct_bind, ct_describe, ct_get_data, ct_results, Cursors, Results

3-148 Routines

ct_get_data Open Client Release 10.0

ct_get_data

Function

Read a chunk of data from the server.

Syntax

CS_RETCODE ct_get_data(cmd, item, buffer,
 buflen, outlen)

CS_COMMAND *cmd;
CS_INT item;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

item – An integer representing the data item of interest. When using
ct_get_data to retrieve data for more than one item in a result set, item
can be incremented only; that is, an application cannot retrieve
data for item number 3 after it has retrieved data for item number
4.

When retrieving a column, item is the column’s column number.
The first column in a select statement’s select-list is column number
1, the second number 2, and so forth.

When retrieving a compute column, item is the column number of
the compute column. Compute columns are returned in the order
in which they are listed in the compute clause. The first column
returned is number 1.

When retrieving a return parameter, item is the parameter number
of the parameter. The first parameter returned by a stored
procedure is number 1. Stored procedure return parameters are
returned in the same order as the parameters were originally
specified in the stored procedure’s create procedure statement. This is
not necessarily the same order as specified in the RPC command
that invoked the stored procedure. In determining what number to
pass as item do not count non-return parameters. For example, if
the second parameter in a stored procedure is the only return
parameter, pass item as 1.

Client-Library/C Reference Manual 3-149

Open Client Release 10.0 ct_get_data

When retrieving a stored procedure return status, item must be 1,
as there can be only a single status in a return status result set.

buffer – A pointer to data space. ct_get_data fills *buffer with a buflen-
sized chunk of the column’s value.

buffer cannot be NULL.

buflen – The length, in bytes, of *buffer.

If buflen is 0, ct_get_data updates the I/O descriptor for the item
without retrieving any data.

buflen is required even for fixed-length buffers, and cannot be
CS_UNUSED.

outlen – A pointer to an integer variable.

If outlen is supplied, ct_get_data sets *outlen to the number of bytes
placed in *buffer.

Returns

Returns: To Indicate:

CS_SUCCEED ct_get_data successfully retrieved a chunk of data that
is not the last chunk of data for this column.

CS_FAIL The routine failed.

Unless the routine failed due to application error (for
example, bad parameters), additional result data is not
available.

CS_END_ITEM ct_get_data successfully retrieved the last chunk of
data for this column. This is not the last column in the
row.

CS_END_DATA ct_get_data successfully retrieved the last chunk of
data for this column. This is the last column in the row.

CS_CANCELED The operation was canceled. Data for this result set is
no longer available.

CS_PENDING Asynchronous network I/O is in effect. See the
Asynchronous Programming topics page for more
information.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-69: Return values (ct_get_data)

3-150 Routines

ct_get_data Open Client Release 10.0

Comments

• An application typically calls ct_get_data in a loop to retrieve large
text or image values, although it can be used on columns of any
datatype. Each call to ct_get_data retrieves a buflen-sized chunk of
data.

• For information on the steps involved in using ct_get_data to retrieve
a text or image value, see ‘‘Using ct_get_data to Fetch Text and
Image Values’’ on page 2-188.

• ct_get_data retrieves data exactly as it is sent by the server. No
conversion is performed. For this reason, care must be taken when
interpreting data contained in *buffer. In particular, CS_CHAR data
may not be null-terminated and multi-byte character strings may
be broken within a byte sequence defining a single character.

• An application calls ct_get_data after calling ct_fetch to fetch the row
of interest. If array binding was indicated in an earlier call to ct_bind,
the application cannot use ct_get_data.

• Only those columns following the last bound column are available
to ct_get_data. Data in unbound columns that precede bound
columns is discarded. For example, if an application selects
columns number 1 through 4 and binds columns number 1 and 3,
the application cannot use ct_get_data to retrieve the data for column
2, but can use ct_get_data to retrieve the data for column 4.

• Once data has been retrieved for a column, it is no longer available.

• If an application reads a text or image column that it will need to
update at a later time, it needs to retrieve an I/O descriptor for the
column. To do this, an application can call ct_data_info after calling
ct_get_data for the column.

➤ Note
An application cannot retrieve an I/O descriptor for a column before it has called

ct_get_data for the column. However, this ct_get_data call does not have to

actually retrieve any data. That is, an application can call ct_get_data with a

buflen of 0, and then call ct_data_info to retrieve the descriptor. This technique is

useful when an application needs to determine the length of a text or image

value before retrieving it.

• For more information on how to use ct_get_data, see‘‘Text and
Image’’ on page 2-188.

Client-Library/C Reference Manual 3-151

Open Client Release 10.0 ct_get_data

Example

/*
** FetchResults()
**
** The result set contains four columns: integer, text,
** float, and integer.
*/

CS_STATIC CS_RETCODE
FetchResults(cmd, textdata)
CS_COMMAND *cmd;
TEXT_DATA *textdata;
{

CS_RETCODE retcode;
CS_DATAFMT fmt;
CS_INT firstcol;
CS_TEXT *txtptr;
CS_FLOAT floatitem;
CS_INT count;
CS_INT len;

/*
** All binds must be of columns prior to the columns
** to be retrieved by ct_get_data().
** To demonstrate this, bind the first column returned.
*/
...CODE DELETED.....

/* Retrieve and display the results */
while(((retcode = ct_fetch(cmd, CS_UNUSED, CS_UNUSED,

CS_UNUSED,&count)) == CS_SUCCEED) ||
(retcode == CS_ROW_FAIL))

{
/* Check for a recoverable error */
...CODE DELETED.....

/*
** Get the text data item in the second column.
** Loop until we have all the data for this item.
** The text used for this example could be
** retrieved in one ct_get_data call, but data
** could be too large for this to be the case.
** Instead, the data would have to be retrieved
** in chunks. This example will retrieve the text
** in 5 byte increments to demonstrate retrieving
** data items in chunks.
*/
txtptr = textdata->textbuf;
textdata->textlen = 0;
do
{

retcode = ct_get_data (cmd, 2, txtptr, 5,
&len);

3-152 Routines

ct_get_data Open Client Release 10.0

textdata->textlen += len;
/*
** Protect against overflowing the string
** buffer.
*/
if ((textdata->textlen + 5) > (EX_MAX_TEXT -

1))
{

break;
}
txtptr += len;

} while (retcode == CS_SUCCEED);

if (retcode != CS_END_ITEM)
{

ex_error("FetchResults: ct_get_data()
failed");

return retcode;
}

/*
** Retrieve the descriptor of the text data. It is
** available while retrieving results of a select
** query. The information will be needed for
** later updates.
*/
...CODE DELETED....

/* Get the float data item in the 3rd column */
retcode = ct_get_data (cmd, 3, &floatitem,

sizeof (floatitem), &len);
if (retcode != CS_END_ITEM)
{

ex_error("FetchResults: ct_get_data()
failed");

return(retcode);
}

/*
** When using ct_get_data to process results, it is
** not required to get all the columns in the row.
** To illustratethis, the last column of the result
** set is not retrieved.
*/

}

/*
** We're done processing rows. Check the
** final return value of ct_fetch().
*/
...CODE DELETED.....

return retcode;
}

Client-Library/C Reference Manual 3-153

Open Client Release 10.0 ct_get_data

This code excerpt is from the getsend.c example program.

See Also

ct_bind, ct_data_info, ct_fetch, ct_send_data, Text and Image

3-154 Routines

ct_getformat Open Client Release 10.0

ct_getformat

Function

Return the server user-defined format string associated with a result
column.

Syntax

CS_RETCODE ct_getformat (cmd, colnum, buffer, buflen,
outlen

CS_COMMAND *cmd;
CS_INT colnum;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

colnum – The number of the column whose user-defined format is
desired. The first column in a select statement’s select-list is column
number 1, the second number 2, and so forth.

buffer – A pointer to the space in which ct_getformat will place a null-
terminated format string.

buflen – The length, in bytes, of the *buffer data space.

outlen – A pointer to an integer variable.

If outlen is supplied, ct_getformat sets *outlen to the length, in bytes, of
the format string. This length includes the null terminator.

If the format string is larger than buflen bytes, an application can
use the value of *outlen to determine how many bytes are needed to
hold the string.

If no format string is associated with the column identified by
colnum, ct_getformat sets *outlen to 1 (for the null terminator).

Client-Library/C Reference Manual 3-155

Open Client Release 10.0 ct_getformat

Returns

Comments

• An application can call ct_getformat after ct_results indicates results of
type CS_ROW_RESULT.

• If no format string is associated with the column identified by
colnum, ct_getformat sets *outlen to 1.

• Typical applications will not use ct_getformat, which is provided
primarily for

• gateway applications support.

See Also

ct_bind, ct_describe

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-70: Return values (ct_getformat)

3-156 Routines

ct_getloginfo Open Client Release 10.0

ct_getloginfo

Function

Transfer TDS login response information from a CS_CONNECTION
structure to a newly-allocated CS_LOGINFO structure.

Syntax

CS_RETCODE ct_getloginfo (connection, logptr)

CS_CONNECTION *connection;
CS_LOGINFO **logptr;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

logptr – A pointer to a program variable which ct_getloginfo sets to the
address of a newly-allocated CS_LOGINFO structure.

Returns

Comments

• TDS (Tabular Data Stream) is a communications protocol used for
the transfer of requests and request results between clients and
servers.

• There are two reasons an application might call ct_getloginfo:

- If it is an Open Server gateway application using TDS pass-
through.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-71: Return values (ct_getloginfo)

Client-Library/C Reference Manual 3-157

Open Client Release 10.0 ct_getloginfo

- In order to copy login properties from an open connection to a
newly-allocated connection structure.

➤ Note
Do not call ct_getloginfo from within a completion callback routine. ct_getloginfo
calls system-level memory functions which may not be re-entrant.

TDS Pass-Through

• When a client connects directly to a server, the two programs
negotiate the TDS format they will use to send and receive data.
When a gateway application uses TDS pass-through, the gateway
forwards TDS packets between the client and a remote server
without examining or processing them. For this reason, the remote
server and the client must agree on a TDS format to use.

• ct_getloginfo is the third of four calls, two of them Server Library
calls, that allow a client and a remote server to negotiate a TDS
format. The calls, which can only be made in an Open Server
SRV_CONNECT event handler, are:

1. srv_getloginfo to allocate a CS_LOGINFO structure and fill it with TDS
information from a client login request.

2. ct_setloginfo to transfer the TDS information retrieved in step 1 from
the CS_LOGINFO structure to a Client-Library CS_CONNECTION
structure. The gateway uses this CS_CONNECTION structure in the
ct_connect call which establishes its connection with the remote
server.

3. ct_getloginfo to transfer the remote server’s response to the client’s
TDS information from the CS_CONNECTION structure into a
newly-allocated CS_LOGINFO structure.

4. srv_setloginfo to send the remote server’s response, retrieved in step
3, to the client.

Copying Login Properties

For information on using ct_getloginfo to copy login properties from an
open connection to a newly-allocated connection structure, see the
Properties topics page.

See Also

ct_recvpassthru, ct_sendpassthru, ct_setloginfo

3-158 Routines

ct_init Open Client Release 10.0

ct_init

Function

Initialize Client-Library for an application context.

Syntax

CS_RETCODE ct_init(context, version)

CS_CONTEXT *context;
CS_INT version;

Parameters

context – A pointer to a CS_CONTEXT structure. An application must
have previously allocated this context structure by calling the CS-
Library routine cs_ctx_alloc.

context identifies the Client-Library context being initialized.

version – The version of Client-Library behavior that the application
expects. The following table lists the symbolic values that are legal
for version:

Returns

Value of version: To Indicate: Features Supported:

CS_VERSION_100 10.0 behavior. Cursors, registered procedures,
remote procedure calls.

This is the initial version of
Client-Library.

Table 3-72: Values for version (ct_init)

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_MEM_ERROR The routine failed due to a memory allocation error.

Table 3-73: Return values (ct_init)

Client-Library/C Reference Manual 3-159

Open Client Release 10.0 ct_init

A ct_init failure does not typically make *context unusable. Instead of
dropping the context structure, an application can try calling ct_init
again with the same context pointer.

Comments

• ct_init sets up internal control structures and defines the version of
Client-Library behavior that the application expects.

• ct_init must be the first Client-Library routine called in a Client-
Library application context. Other Client-Library routines will fail
if they are called before ct_init.

➤ Note
A Client-Library application can call CS-Library routines before calling ct_init
(and in fact must call the CS-Library routine cs_ctx_alloc before calling ct_init).

• If ct_init returns CS_SUCCEED, Client-Library will provide the
requested behavior, regardless of the actual version of Client-
Library in use. If Client-Library cannot provide the requested
behavior, ct_init returns CS_FAIL. Generally speaking, higher-level
versions of Client-Library can provide lower-level behavior, but
lower versions cannot provide higher-level behavior.

• Because an application calls ct_init before it sets up error handling,
an application must check ct_init’s return code to detect failure.

• It is not an error for an application to call ct_init multiple times for
the same context. If this occurs, only the first call has any effect.
Client-Library provides this functionality because some
applications cannot guarantee which of several modules will
execute first. In such a case, each module needs to contain a call to
ct_init.

CS_FAIL The routine failed for other reasons.

ct_init returns CS_FAIL if Client-Library cannot
provide version-level behavior.

Returns: To Indicate:

Table 3-73: Return values (ct_init) (continued)

3-160 Routines

ct_init Open Client Release 10.0

• version is the version of Client-Library behavior that the
application expects. version determines the value of the context’s
CS_VERSION property. Connections allocated within a context use
default CS_TDS_VERSION values based on their parent context’s
CS_VERSION level.

Example

/*
** ex_init()
** EX_CTLIB_VERSION is defined in the examples header file
** as CS_VERSION_100.

*/

CS_RETCODE CS_PUBLIC
ex_init(context)
CS_CONTEXT **context;
{

CS_RETCODE retcode;

/* Get a context handle to use */
retcode = cs_ctx_alloc(EX_CTLIB_VERSION, context);
if (retcode != CS_SUCCEED)
{

...CODE DELETED.....
}

/* Initialize Open Client */
retcode = ct_init (*context, EX_CTLIB_VERSION);
if (retcode != CS_SUCCEED)
{

ex_error("ex_init: ct_init() failed");
cs_ctx_drop(*context);
*context = NULL;
return retcode;

}

#ifdef EX_API_DEBUG
...CODE DELETED.....

#endif

/* Install client and server message handlers */
...CODE DELETED.....

/* Call ct_config to set context properties */
...CODE DELETED.....

if (retcode != CS_SUCCEED)
{

ct_exit(*context, CS_FORCE_EXIT);
cs_ctx_drop(*context);
*context = NULL;

}

Client-Library/C Reference Manual 3-161

Open Client Release 10.0 ct_init

return retcode;
}

This code excerpt is from the exutils.c example program. For another
example of using ct_init, see the ex_amain.c example program.

See Also

cs_ctx_alloc, ct_exit

3-162 Routines

ct_keydata Open Client Release 10.0

ct_keydata

Function

Specify or extract the contents of a key column.

Syntax

CS_RETCODE ct_keydata (cmd, action, colnum, buffer,
 buflen, outlen)

CS_COMMAND *cmd;
CS_INT action;
CS_INT colnum;
CS_VOID *buffer;
CS_INT buflen;
CS_INT outlen;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server cursor operation.

action – One of the following symbolic values:

colnum – The number of the column of interest. The first column in a
result set is column number 1, the second 2, and so forth.

colnum must represent a CS_KEY or CS_VERSION_KEY column.
ct_describe sets its *datafmt→status field to indicate whether or not
a column is a CS_KEY or CS_VERSION_KEY column.

buffer – If a key column is being set, buffer points to the value to use in
setting the key column.

If a key column value is being retrieved, buffer points to the space
in which ct_keydata will place the requested information.

buflen – The length, in bytes, of *buffer.

Value of action: ct_keydata:

CS_SET Sets the contents of the key column.

CS_GET Retrieves the contents of the key column.

Table 3-74: Values for action (ct_keydata)

Client-Library/C Reference Manual 3-163

Open Client Release 10.0 ct_keydata

If a key column value is being set and the value in *buffer is null-
terminated, pass buflen as CS_NULLTERM.

If a key column value is being retrieved and buflen indicates that
*buffer is not large enough to hold the requested information,
ct_keydata sets *outlen to the length of the requested information
and returns CS_FAIL.

buflen is required even for fixed-length buffers, and cannot be
passed as CS_UNUSED.

outlen – A pointer to an integer variable.

If a key column value is being set, outlen is unused and must be
passed as NULL.

If a key column value is being retrieved, ct_keydata sets *outlen to
the length, in bytes, of the requested information.

If the information is larger than buflen bytes, an application can
use the value of *outlen to determine how many bytes are needed
to hold the information.

If an application is setting a key column value or does not care
about return length information, it can pass outlen as NULL.

Returns

Comments

• An application can use ct_keydata to redefine “current” before
performing a cursor update or delete.

• ct_keydata has two primary uses:

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

ct_keydata returns CS_FAIL if colnum does not
represent a key column.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-75: Return values (ct_keydata)

3-164 Routines

ct_keydata Open Client Release 10.0

- In gateway applications that buffer cursor rows between a client
and a server. In this case, the client’s notion of cursor position can
differ from the gateway’s. If the client sends a positioned update
or delete request, the gateway can use ct_keydata to correctly
identify the target row to the server.

- In applications that allows users to browse through data rows,
altering or deleting them in random order. In this case, a user
may ask the application to alter or delete a row that is not the
current cursor row. The application can use ct_keydata to redefine
the target row as the current row.

• Because a key can span multiple columns, an application may need
to call ct_keydata multiple times to specify a row’s entire key.

• Calling ct_fetch wipes out any key column values that an
application has specified.

• An application can call ct_keydata only under the following
circumstances:

- The current result type is CS_CURSOR_RESULT.

- The command structure which is supporting the cursor must
have its CS_HIDDEN_KEYS property set to CS_TRUE.

- At least one fetch must have occurred on the cursor.

• When updating a key, all key columns must be updated. If a
positioned update or delete is attempted when the row’s entire key
has not been redefined, ct_cursor returns CS_FAIL.

• An application can set a key column’s value to NULL by calling
ct_keydata with buffer as NULL and buflen as 0 or CS_UNUSED. If the
column does not allow null values, ct_keydata returns CS_FAIL.

See Also

Cursors, ct_cursor, ct_describe, ct_res_info, ct_results

Client-Library/C Reference Manual 3-165

Open Client Release 10.0 ct_labels

ct_labels

Function

Define a security label or clear security labels for a connection.

Syntax

CS_RETCODE ct_labels(connection, action,
labelname, namelen, labelvalue,
valuelen, outlen)

CS_CONNECTION *connection;
CS_INT action;
CS_CHAR *labelname;
CS_INT namelen;
CS_CHAR *labelvalue;
CS_INT valuelen;
CS_INT *outlen;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

*connection must represent a closed connection.

action – One of the following symbolic values:

labelname – If action is CS_SET, labelname points to the name of the
security label being set.

If action is CS_CLEAR, labelname must be NULL.

namelen – The length, in bytes, of *labelname. If *labelname is null-termi-
nated, pass namelen as CS_NULLTERM.

Security label names must be at least one byte long and no more
than CS_MAX_NAME bytes long.

Value of action: ct_labels:

CS_SET Sets a security label.

CS_CLEAR Clears all security labels previously specified for
this connection.

Table 3-76: Values for action (ct_labels)

3-166 Routines

ct_labels Open Client Release 10.0

If action is CS_CLEAR, pass namelen as CS_UNUSED.

labelvalue – If action is CS_SET, labelvalue points to the value of the
security label being set.

If action is CS_CLEAR, labelvalue must be NULL.

valuelen – The length, in bytes, of *labelvalue. If *labelvalue is null-termi-
nated, pass valuelen as CS_NULLTERM.

Security label values must be at least one byte long.

If action is CS_CLEAR, pass valuelen as CS_UNUSED.

outlen – This parameter is currently unused and must be passed as
NULL.

Returns

Comments

• An application needs to define security labels if it will be
connecting to a server that uses trusted-user security handshakes.

• Secure SQL Server uses trusted-user security handshakes. On
Secure SQL Server, security labels are known as “sensitivity
labels.”

• There are two ways for an application to define security labels. An
application can use either, or both, of these methods:

- The application can call ct_labels one time for each label it wants to
define.

- The application can call ct_callback to install a user-supplied
negotiation callback to generate security labels. At connection
time, Client-Library automatically triggers the callback in
response to a request for security labels.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-77: Return values (ct_labels)

Client-Library/C Reference Manual 3-167

Open Client Release 10.0 ct_labels

If an application uses both methods, the labels defined via
ct_labels and the labels generated by the negotiation callback are
sent to the server at the same time.

• A connection that will be participating in trusted-user security
handshakes must set the CS_SEC_NEGOTIATE property to CS_TRUE.

• There is no limit on the number of security labels that can be
defined for a connection.

• ct_labels does not perform any type of checking on security labels,
but simply passes the label name/label value combinations on to
the server.

For example, ct_labels does not raise an error if an application
supplies two label values for the same label name.

See Also

ct_callback, ct_con_props, ct_connect

3-168 Routines

ct_options Open Client Release 10.0

ct_options

Function

Set, retrieve, or clear the values of server query-processing options.

Syntax

CS_RETCODE ct_options(connection, action, option,
param, paramlen, outlen)

CS_CONNECTION *connection;
CS_INT action;
CS_INT option;
CS_VOID *param;
CS_INT paramlen;
CS_INT *outlen;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

connection is the server connection for which the option is set,
retrieved, or cleared.

action – One of the following symbolic values:

option – The server option of interest. The chart in the Summary of Param-
eters section lists the symbolic values that are legal for option. For
more information on these options, see the Options topics page.

param – All options take parameters.

Value of action: ct_options:

CS_SET Sets the option.

CS_GET Retrieves the option.

An application can use ct_options to retrieve
options from 10.0+ SQL Servers only.

CS_CLEAR Clears the option by resetting it to its default value.
Default values are determined by the server to
which an application is connected.

Table 3-78: Values for action (ct_options)

Client-Library/C Reference Manual 3-169

Open Client Release 10.0 ct_options

When setting an option, param can point to a symbolic value, a
boolean value, an integer value, or a character string.

For example:

- The CS_OPT_DATEFIRST option takes a symbolic value as a
parameter:

CS_INT parmvalue;
parmamvalue = CS_OPT_TUESDAY;
ct_options(conn, CS_SET, CS_OPT_DATEFIRST,

¶mvalue, CS_UNUSED, NULL);

- The CS_OPT_CHAINXACTS option takes a boolean value as a
parameter:

CS_BOOL parmvalue;
parmamvalue = CS_TRUE;
ct_options(conn, CS_SET, CS_OPT_CHAINXACTS,

¶mvalue, CS_UNUSED, NULL);

- The CS_OPT_ROWCOUNT option takes an integer as a parameter:

CS_INT parmvalue;
paramvalue = 50;
oc_options(conn, CS_SET, CS_OPT_ROWCOUNT,

¶mvalue, CS_UNUSED, NULL);

- The CS_OPT_IDENTITYOFF option takes a character string as a
parameter:

ct_options(conn, CS_SET, CS_OPT_IDENTITYOFF,
"authors", CS_NULLTERM, NULL);

When retrieving an option, param points to the space in which
ct_options places the value of the option.

If paramlen indicates that *param is not large enough to hold the
option’s value, ct_param sets* outlen to the length of the value and
returns CS_FAIL.

When clearing an option, param must be NULL.

paramlen – The length, in bytes, of *param.

When setting or retrieving an option that takes a fixed-length
parameter, pass paramlen as CS_UNUSED.

When setting an option that takes a character string parameter, if
the value in *param is null-terminated, pass paramlen as
CS_NULLTERM.

3-170 Routines

ct_options Open Client Release 10.0

When retrieving an option, if paramlen indicates that *param is not
large enough to hold the requested information, ct_options sets
outlen to the length of the requested information and returns
CS_FAIL.

When clearing an option, paramlen must be CS_UNUSED.

outlen – A pointer to an integer variable.

If an option is being set or cleared, outlen is not used and must be
passed as NULL.

If an option is being retrieved, ct_options sets *outlen to the length, in
bytes, of the option’s value. This length includes a null terminator,
if applicable.

If the option’s value is larger than paramlen bytes, an application
can use the value of *outlen to determine how many bytes are
needed to hold the information.

Summary of Parameters

Value of option: *param is: Legal values for *param: Defaults to:

CS_OPT_ANSINULL A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ANSIPERM A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ARITHABORT A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ARITHIGNORE A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_AUTHOFF A string value
representing an
authority level.

A string value.

Possible values include
“sa”, “sso”, and “oper”.

Not applicable

CS_OPT_AUTHON A string value
representing an
authority level.

A string value.

Possible values include
“sa”, “sso”, and “oper”.

Not applicable

CS_OPT_CHAINXACTS A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_CURCLOSEON
XACT

A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_CURREAD A string value
representing a read
level label.

A string value. NULL

Table 3-79: Summary of parameters (ct_options)

Client-Library/C Reference Manual 3-171

Open Client Release 10.0 ct_options

CS_OPT_CURWRITE A string value
representing a write
level label.

A string value. NULL

CS_OPT_DATEFIRST A symbolic value
representing the day to
use as the first day of
the week.

CS_OPT_SUNDAY,
CS_OPT_MONDAY,
CS_OPT_TUESDAY,
CS_OPT_WEDNESDAY,
CS_OPT_THURSDAY,
CS_OPT_FRIDAY,
CS_OPT_SATURDAY

For us_english,
the default is
CS_OPT_
SUNDAY.

CS_OPT_DATEFORMAT A symbolic value
representing the order
of year, month, and
day to be used in
datetime values.

CS_OPT_FMTMDY,
CS_OPT_FMTDMY,
CS_OPT_FMTYMD,
CS_OPT_FMTYDM,
CS_OPT_FMTMYD,
CS_OPT_FMTDYM“

For us_english,
the default is
CS_OPT_
FMTMDY.

CS_OPT_FIPSFLAG A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_FORCEPLAN A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_FORMATONLY A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_GETDATA A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_IDENTITYOFF A string value
representing a table
name.

A string value. NULL

CS_OPT_IDENTITYON A string value
representing a table
name.

A string value. NULL

CS_OPT_ISOLATION A symbolic value
representing the
isolation level.

CS_OPT_LEVEL1,
CS_OPT_LEVEL3

CS_OPT_
LEVEL1

CS_OPT_NOCOUNT A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_NOEXEC A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_PARSEONLY A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_QUOTED_
IDENT

A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_RESTREES A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ROWCOUNT The maximum number
of regular rows to
return.

An integer value.

0 means all rows are
returned.

0, meaning all
rows are
returned.

Value of option: *param is: Legal values for *param: Defaults to:

Table 3-79: Summary of parameters (ct_options) (continued)

3-172 Routines

ct_options Open Client Release 10.0

Returns

Comments

• Although query-processing options can be set and cleared through
the Transact-SQL set command, it is recommended that Client-
Library applications use ct_options instead. This is because ct_options
allows an application to check the status of an option, which
cannot be done through the set command.

CS_OPT_SHOWPLAN A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_STATS_IO A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_STATS_TIME A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_STR_RTRUNC A boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_TEXTSIZE The length, in bytes, of
the longest text or
image value the server
should return.

An integer value. 32,768 bytes.

CS_OPT_TRUNCIGNORE A boolean value. CS_TRUE, CS_FALSE CS_FALSE

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

If ct_options returns CS_FAIL, *param remains
untouched.

CS_CANCELED The operation was canceled.

CS_PENDING Asynchronous network I/O is in effect. See the
Asynchronous Programming topics page for more
information.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-80: Return values (ct_options)

Value of option: *param is: Legal values for *param: Defaults to:

Table 3-79: Summary of parameters (ct_options) (continued)

Client-Library/C Reference Manual 3-173

Open Client Release 10.0 ct_options

• An application can use ct_options to change server options only for
a single connection at a time. The connection must be open and
must have no active commands or pending results, but can have an
open cursor.

• An application cannot use ct_options to retrieve options from pre-
10.0 SQL Servers.

• An application can use ct_options to set options in pre-10.0 SQL
Servers, but pre-10.0 servers do not support all options listed in the
Summary of Parameters section. For example, the 4.9 SQL Server does
not support the CS_OPT_RESTREES option. For information on
which options a server supports, see the manual page for the set
command in the SQL Server Reference Manual.

See Also

ct_capability, ct_con_props, Options

3-174 Routines

ct_param Open Client Release 10.0

ct_param

Function

Define a command parameter.

Syntax

CS_RETCODE ct_param(cmd, datafmt, data, datalen,
indicator);

CS_COMMAND *cmd;
CS_DATAFMT *datafmt;
CS_VOID *data;
CS_INT datalen;
CS_SMALLINT indicator;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

datafmt – A pointer to a CS_DATAFMT structure that describes the
parameter.

For information on how to set these fields for specific uses of
ct_param, see the charts in the Comments section.

data – The address of the parameter data.

There are two ways to indicate a parameter with a null value:

- Pass indicator as -1. In this case, data and datalen are ignored.

- Pass data as NULL and datalen as 0 or CS_UNUSED.

datalen – The length, in bytes, of the parameter data.

If datafmt→datatype indicates that the parameter is a fixed-length
type, datalen is ignored. CS_VARBINARY and CS_VARCHAR are
considered to be fixed-length types.

indicator – An integer variable used to indicate a parameter with a null
value. To indicate a parameter with a null value, pass indicator as
-1. If indicator is -1, data and datalen are ignored.

Client-Library/C Reference Manual 3-175

Open Client Release 10.0 ct_param

Summary of Parameters

Returns

Type of command: ct_param called for what
purpose? datafmt→status is: *data, datalen are:

Cursor declare To identify update
columns.

CS_UPDATECOL The name of the update
column and the name’s
length.

Cursor declare To define host variable
formats.

CS_INPUTVALUE NULL and CS_UNUSED.

Cursor open To pass input
parameter values.

CS_INPUTVALUE The parameter value and
length.

Cursor update To pass input
parameter values.

CS_INPUTVALUE The parameter value and
length.

Dynamic SQL execute To pass input
parameter values.

CS_INPUTVALUE The parameter value and
length.

Language To pass input
parameter values.

CS_INPUTVALUE The parameter value and
length.

Message To pass input
parameter values.

CS_INPUTVALUE The parameter value and
length.

RPC To pass input or return
parameter values.

CS_RETURN to pass
a return parameter;
CS_INPUTVALUE
to pass a non-return
parameter.

The parameter value and
length.

Table 3-81: Summary of parameters (ct_param)

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-82: Return values (ct_param)

3-176 Routines

ct_param Open Client Release 10.0

Comments

• An application may need to call ct_param:

- To identify update columns for a cursor declare command.

- To define host variable formats for a cursor declare command.

- To pass input parameter values for a cursor open, cursor update,
dynamic SQL execute, language, message, or RPC command.

An application calls ct_command to initiate a language, RPC or
message command, calls ct_cursor to initiate a cursor declare or
cursor open command, and calls ct_dynamic to initiate a Dynamic
SQL execute command

For specific information on these uses, see the following sections,
‘‘Identifying Update Columns for a Cursor Declare Command’’,
‘‘Defining Host Variable Formats’’, and ‘‘Passing Input
Parameter Values’’.

• In some cases an application may need to pass a parameter that has
a value of NULL. For example, an application might pass
parameters with null values to a stored procedure that assigns
default values to NULL input parameters.

There are two ways to indicate a parameter with a null value:

- Pass indicator as -1. In this case, data and datalen are ignored.

- Pass data as NULL and datalen as 0 or CS_UNUSED.

• Client-Library does not perform any conversion on parameters
before passing them to the server. If parameter conversion is
required, it is the server’s responsibility.

Identifying Update Columns for a Cursor Declare Command

• An application needs to identify update columns for a cursor
declare command if some, but not all, of the columns are “for
update.” Update columns can be used to change values in
underlying database tables.

• If all of the cursor’s columns are for update, an application does
not need to call ct_param to specify them individually.

• To identify an update column for a cursor declare command, an
application calls ct_param with datafmt→status as CS_UPDATECOL
and *data as the name of the column.

Client-Library/C Reference Manual 3-177

Open Client Release 10.0 ct_param

• The following table lists the fields in *datafmt that are used when
identifying update columns for a cursor declare command:

Defining Host Variable Formats

• An application needs to define host variable formats for cursor
declare commands, when the body of the cursor being declared is
a SQL string that contains host variables.

• To define the format of a host variable, an application calls ct_param
with datafmt→status as CS_INPUTVALUE, datafmt→datatype as the
datatype of the host variable, data as NULL and datalen as
CS_UNUSED.

• An application defines host variable formats during a cursor
declare command but does not pass data values for the variables
until cursor open time.

• When defining host variable formats, the variables can either be
named or unnamed. If one variable is named, all variables must be
named. If variables are not named, they are interpreted
positionally.

• The following table lists the fields in *datafmt that are used when
defining host variable formats:

Field name: Set the field to:

status CS_UPDATECOL

All other fields Are ignored.

Table 3-83: CS_DATAFMT fields for identifying update columns

Field name: Set the field to:

name The name of the host variable.

namelen The length, in bytes, of name, or 0 to indicate an unnamed
parameter.

Table 3-84: CS_DATAFMT fields for defining host variable formats

3-178 Routines

ct_param Open Client Release 10.0

Passing Input Parameter Values

• An application may need to pass input parameter values for:

- Client-Library cursor open commands

- Client-Library cursor update commands

- Dynamic SQL execute commands

- Language commands

- Message commands

- RPC commands

• When passing input parameter values, parameters can either be
named or unnamed. If one parameter is named, all parameters
must be named. If parameters are not named, they are interpreted
positionally.

• Client-Library cursor open commands require input parameter
values when:

- The body of the cursor is a SQL text string containing host
variables.

- The body of the cursor is a stored procedure that requires
parameters. In this case, *datafmt→status can be either
CS_RETURN, to indicate that the a return parameter, or
CS_INPUTVALUE, to indicate a non-return parameter.

• Client-Library cursor update commands require input parameter
values when the SQL text representing the update command
contains host variables.

datatype The datatype of the host variable.

All standard Client-Library types are valid except for
CS_TEXT_TYPE, CS_IMAGE_TYPE, and Client-Library
user-defined types.

If datatype is CS_VARCHAR_TYPE or
CS_VARBINARY_TYPE then data must point to a
CS_VARCHAR or CS_VARBINARY structure.

status CS_INPUTVALUE

All other fields Are ignored.

Field name: Set the field to:

Table 3-84: CS_DATAFMT fields for defining host variable formats (continued)

Client-Library/C Reference Manual 3-179

Open Client Release 10.0 ct_param

• Dynamic SQL execute commands require input parameter values
when the prepared statement being executed contains dynamic
parameter markers.

• Language commands require input parameter values when the
text of the language command contains host variables.

• Message commands require input parameters values when the
message takes parameters.

• RPC commands require input parameter values when the stored
procedure being executed takes parameters.

• The following table lists the fields in *datafmt that are used when
passing input parameter values:

Field name: Set the field to:

name The name of the parameter.

name is ignored for dynamic SQL execute commands.

namelen The length, in bytes, of name, or 0 to indicate an unnamed
parameter.

namelen is ignored for dynamic SQL execute commands.

datatype The datatype of the input parameter value.

All standard Client-Library types are valid except for
CS_TEXT_TYPE, CS_IMAGE_TYPE, and Client-Library
user-defined types.

If datatype is CS_VARCHAR_TYPE or
CS_VARBINARY_TYPE then data must point to a
CS_VARCHAR or CS_VARBINARY structure.

maxlength When passing return parameters for RPC commands,
maxlength represents the maximum length, in bytes, of
data to be returned for this parameter.

maxlength is not used when passing input parameter
values for other types of commands.

status CS_RETURN when passing return parameters for RPC
commands; otherwise CS_INPUTVALUE.

All other fields Are ignored.

Table 3-85: CS_DATAFMT fields for passing input parameter values

3-180 Routines

ct_param Open Client Release 10.0

Example

/*
** BuildRpcCommand()
**
** Purpose:
** Builds an RPC command but does not send it.
**
*/

CS_STATIC CS_RETCODE
BuildRpcCommand(cmd)
CS_COMMAND *cmd;
{

CS_CONNECTION* connection;
CS_CONTEXT *context;
CS_RETCODE retcode;
CS_DATAFMT datafmt;
CS_DATAFMT srcfmt;
CS_DATAFMT destfmt;
CS_INT intvar;
CS_SMALLINT smallintvar;
CS_FLOAT floatvar;
CS_MONEY moneyvar;
CS_BINARY binaryvar;
char moneystring[10];
char rpc_name[15];
CS_INT destlen;

/*
** Assign values to the variables used for
** parameter passing.
*/
intvar = 2;
smallintvar = 234;
floatvar = 0.12;
binaryvar = (CS_BINARY)0xff;
strcpy(rpc_name, "sample_rpc");
strcpy(moneystring, "300.90");

/*
** Clear and setup the CS_DATAFMT structures used
** to convert datatypes.
*/
memset(&srcfmt, 0, sizeof (CS_DATAFMT));
srcfmt.datatype = CS_CHAR_TYPE;
srcfmt.maxlength = strlen(moneystring);
srcfmt.precision = 5;
srcfmt.scale = 2;
srcfmt.locale = NULL;

Client-Library/C Reference Manual 3-181

Open Client Release 10.0 ct_param

memset(&destfmt, 0, sizeof (CS_DATAFMT));
destfmt.datatype = CS_MONEY_TYPE;
destfmt.maxlength = sizeof(CS_MONEY);
destfmt.precision = 5;
destfmt.scale = 2;
destfmt.locale = NULL;

/*
** Convert the string representing the money value
** to a CS_MONEY variable. Since this routine
** does not have the context handle, we use the
** property functions to get it.
*/
if ((retcode = ct_cmd_props(cmd, CS_GET,

CS_PARENT_HANDLE, &connection, CS_UNUSED,
NULL)) != CS_SUCCEED)

{
...CODE DELETED.....

}
if ((retcode = ct_con_props(connection, CS_GET,

CS_PARENT_HANDLE, &context, CS_UNUSED,
NULL)) != CS_SUCCEED)

{
...CODE DELETED.....

}
retcode = cs_convert(context, &srcfmt,

(CS_VOID *)moneystring, &destfmt, &moneyvar,
&destlen);

if (retcode != CS_SUCCEED)
{

...CODE DELETED.....
}

/*
** Initiate the RPC command for our stored
** procedure.
*/
if ((retcode = ct_command(cmd, CS_RPC_CMD,

rpc_name, CS_NULLTERM,CS_NO_RECOMPILE)) !=
CS_SUCCEED)

{
...CODE DELETED.....

}

3-182 Routines

ct_param Open Client Release 10.0

/*
** Clear and setup the CS_DATAFMT structure, then
** pass each of the parameters for the RPC.
*/
memset(&datafmt, 0, sizeof (datafmt));
strcpy(datafmt.name, "@intparam");
datafmt.namelen = CS_NULLTERM;
datafmt.datatype = CS_INT_TYPE;
datafmt.maxlength = CS_UNUSED;
datafmt.status = CS_INPUTVALUE;
datafmt.locale = NULL;

if ((retcode = ct_param (cmd, &datafmt,
(CS_VOID *)&intvar, sizeof(CS_INT),
CS_UNUSED)) != CS_SUCCEED)

{
...CODE DELETED.....

}

strcpy(datafmt.name, "@sintparam");
datafmt.namelen = CS_NULLTERM;
datafmt.datatype = CS_SMALLINT_TYPE;
datafmt.status = CS_RETURN;
datafmt.locale = NULL;

if ((retcode = ct_param (cmd, &datafmt,
(CS_VOID *)&smallintvar,
sizeof(CS_SMALLINT), CS_UNUSED)) !=
CS_SUCCEED)

{
...CODE DELETED.....

}

strcpy(datafmt.name, "@floatparam");
datafmt.namelen = CS_NULLTERM;
datafmt.datatype = CS_FLOAT_TYPE;
datafmt.status = CS_RETURN;
datafmt.locale = NULL;

if((retcode = ct_param (cmd, &datafmt,
(CS_VOID *)&floatvar, sizeof(CS_FLOAT),
CS_UNUSED)) != CS_SUCCEED)

{
...CODE DELETED.....

}

strcpy(datafmt.name, "@moneyparam");
datafmt.namelen = CS_NULLTERM;
datafmt.datatype = CS_MONEY_TYPE;
datafmt.status = CS_RETURN;
datafmt.locale = NULL;

Client-Library/C Reference Manual 3-183

Open Client Release 10.0 ct_param

if((retcode = ct_param (cmd, &datafmt,
(CS_VOID *)&moneyvar, sizeof(CS_MONEY),
CS_UNUSED)) != CS_SUCCEED)

{
...CODE DELETED.....

}

strcpy(datafmt.name, "@dateparam");
datafmt.namelen = CS_NULLTERM;
datafmt.datatype = CS_DATETIME4_TYPE;
datafmt.status = CS_RETURN;
datafmt.locale = NULL;

/*
** The datetime variable is filled in by the RPC
** so pass NULL for the data, 0 for data length,
** and -l for the indicator arguments.
*/
if((retcode = ct_param (cmd, &datafmt, NULL, 0,

-1)) != CS_SUCCEED)
{

...CODE DELETED.....
}

strcpy(datafmt.name, "@charparam");
datafmt.namelen = CS_NULLTERM;
datafmt.datatype = CS_CHAR_TYPE;
datafmt.maxlength = EX_MAXSTRINGLEN;
datafmt.status = CS_RETURN;
datafmt.locale = NULL;

/*
** The character string variable is filled in by
** the RPC so pass NULL for the data 0 for data
** length, and -l for the indicator arguments.
*/
if((retcode = ct_param (cmd, &datafmt, NULL, 0,

-1)) != CS_SUCCEED)
{

...CODE DELETED.....
}

strcpy(datafmt.name, "@binaryparam");
datafmt.namelen = CS_NULLTERM;
datafmt.datatype = CS_BINARY_TYPE;
datafmt.maxlength = EX_MAXSTRINGLEN;
datafmt.status = CS_RETURN;
datafmt.locale = NULL;

3-184 Routines

ct_param Open Client Release 10.0

if((retcode = ct_param (cmd, &datafmt,
(CS_VOID *)&binaryvar, sizeof(CS_BINARY),
CS_UNUSED)) != CS_SUCCEED)

{
...CODE DELETED.....

}

return retcode;
}

This code excerpt is from the rpc.c example program.

See Also

ct_command, ct_cursor, ct_dynamic, ct_send

Client-Library/C Reference Manual 3-185

Open Client Release 10.0 ct_poll

ct_poll

Function

Poll connections for asynchronous operation completions and
registered procedure notifications.

Syntax

CS_RETCODE ct_poll (context, connection,
milliseconds, compconn,
compcmd, compid, compstatus)

CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_INT milliseconds;
CS_CONNECTION **compconn;
CS_COMMAND **compcmd;
CS_INT *compid;
CS_RETCODE *compstatus;

Parameters

context – A pointer to a CS_CONTEXT structure.

Either context or connection must be NULL. If context is NULL, ct_poll
checks only a single connection.

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

Either context or connection must be NULL. If connection is NULL,
ct_poll checks all open connections within the context.

milliseconds – The length of time, in milliseconds, to wait for pending
operations to complete.

If milliseconds is 0, ct_poll returns immediately. To check for
operation completions without blocking, pass milliseconds as 0.

If milliseconds is CS_NO_LIMIT, ct_poll does not return until either a
server response arrives or a system interrupt occurs.

compconn – The address of a pointer variable. If connection is NULL, all
connections are polled and ct_poll sets *compconn to point to the
connection structure owning the first completed operation it finds.

If no operation has completed by the time ct_poll returns, ct_poll
sets *compconn to NULL.

3-186 Routines

ct_poll Open Client Release 10.0

If connection is supplied, compconn must be NULL.

compcmd – The address of a pointer variable. ct_poll sets *compcmd to
point to the command structure owning the first completed
operation it finds. If no operation has completed by the time ct_poll
returns, ct_poll sets *compcmd to NULL.

compid – The address of an integer variable. ct_poll sets *compid to one of
the following symbolic values to indicate what has completed:

compstatus – A pointer to a variable of type CS_RETCODE. ct_poll sets
*compstatus to indicate the final return code of the completed
operation. This can be any of the return codes listed for the routine,
with the exception of CS_PENDING.

Value of compid: Indicating:

BLK_ROWXFER blk_rowxfer has completed.

BLK_SENDROW blk_sendrow has completed.

BLK_SENDTEXT blk_sendtext has completed.

BLK_TEXTXFER blk_textxfer has completed

CT_CANCEL ct_cancel has completed.

CT_CLOSE ct_close has completed.

CT_CONNECT ct_connect has completed.

CT_FETCH ct_fetch has completed.

CT_GET_DATA ct_get_data has completed.

CT_NOTIFICATION A notification has been received.

CT_OPTIONS ct_options has completed.

CT_RECVPASSTHRU ct_recvpassthru has completed.

CT_RESULTS ct_results has completed.

CT_SEND ct_send has completed.

CT_SEND_DATA ct_send_data has completed.

CT_SENDPASSTHRU ct_sendpassthru has completed.

A user-defined value.
This value must be
greater than or equal to
CT_USER_FUNC.

A user-defined function has completed.

Table 3-86: Values for compid (ct_poll)

Client-Library/C Reference Manual 3-187

Open Client Release 10.0 ct_poll

Summary of Parameters

Returns

ct_poll returns CS_FAIL if it polls a connection that has died.

Comments

• ct_poll will poll either a specific connection or all connections within
a specific context.

• If a platform does not provide interrupt-driven I/O, then an
application must read from the network in order to recognize
asynchronous operation completions and registered procedure
notifications.

context: connection: compconn: ct_poll:

NULL Must have a
value.

Must be NULL. Checks the single connection specified by
connection.

Has a value Must be NULL. Must have a
value.

Checks all connections within this context. Sets
*compconn to point to the connection owning the
first completed operation it finds.

Table 3-87: Summary of parameters (ct_poll)

Returns: To Indicate:

CS_SUCCEED An operation has completed.

CS_FAIL An error occurred.

CS_TIMED_OUT The timeout value specified by milliseconds elapsed
before any operation completed.

Asynchronous operations may be in progress.

CS_QUIET ct_poll was called with milliseconds as 0 (to indicate
that it should return immediately).

No asynchronous operations are in progress, and no
completed operations were found.

CS_INTERRUPT A system interrupt has occurred.

Table 3-88: Return values (ct_poll)

3-188 Routines

ct_poll Open Client Release 10.0

All routines that can return CS_PENDING read from the network.
If an application is not actively using any of these routines, it
must call ct_poll in order to recognize asynchronous operation
completions and registered procedure notifications.

• If a platform allows the use of callback functions, ct_poll
automatically calls the proper callback routine, if one is installed,
when it finds a completed operation or a notification.

• ct_poll does not check for asynchronous operation completions if
the CS_DISABLE_POLL property is set to CS_TRUE.

• If CS_ASYNC_NOTIFS is CS_FALSE, ct_poll will not read from the
network. This means that an application must be reading results in
order for ct_poll to report a registered procedure notification.

• For more information see the Callbacks and Asynchronous Programming
topics pages.

Example

/*
** BusyWait()
**
** Prints out dots while waiting for an async
** operation to complete. It demonstrates an
** application’s ability to do other work while an
** async operation is pending.
*/

CS_STATIC CS_RETCODE CS_INTERNAL
BusyWait(connection, where)
CS_CONNECTION *connection;
char *where;
{

CS_COMMAND *compcmd;
CS_INT compid;
CS_RETCODE compstat;

fprintf(stdout, "Waiting [%s]", where);
fflush(stdout);
while (completed == CS_FALSE)
{

fprintf(stdout, ".");
fflush(stdout);
ct_poll (NULL, connection, 100, NULL, &compcmd,

&compid, &compstat);
}

Client-Library/C Reference Manual 3-189

Open Client Release 10.0 ct_poll

fprintf(stdout, "\n");
return completed_retcode;

}

This code excerpt is from the ex_amain.c example program.

See Also

Asynchronous Programming, Callbacks, ct_callback, ct_wakeup, Properties

3-190 Routines

ct_recvpassthru Open Client Release 10.0

ct_recvpassthru

Function

Receive a TDS (Tabular Data Stream) packet from a server.

Syntax

CS_RETCODE ct_recvpassthru (cmd, recvptr)

CS_COMMAND *cmd;
CS_VOID **recvptr;

Parameters

cmd – A pointer to a CS_COMMAND structure.

recvptr – The address of a pointer variable. ct_recvpassthru sets the
variable to the address of a buffer containing the most-recently-
received TDS packet. The application is not responsible for
allocating this buffer.

Returns

Returns: To Indicate:

CS_PASSTHRU_MORE Packet received successfully; more packets are
available.

CS_PASSTHRU_EOM Packet received successfully; no more packets are
available.

CS_FAIL The routine failed.

CS_CANCELED The pass-through operation was canceled.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the Asynchronous Programming
topics page.

CS_BUSY An asynchronous operation is already pending for
this connection. For more information, see the
Asynchronous Programming topics page.

Table 3-89: Return values (ct_recvpassthru)

Client-Library/C Reference Manual 3-191

Open Client Release 10.0 ct_recvpassthru

Comments

• TDS is a communications protocol used for the transfer of requests
and request results between clients and servers. Under ordinary
circumstances, non-gateway applications do not usually have to
deal with TDS, because Client-Library manages the data stream.

• ct_recvpassthru and ct_sendpassthru are useful in gateway applications.
When an application serves as the intermediary between two
parties (such as a client and a remote server, or two servers), it can
use these routines to pass the TDS stream from one server to the
other, eliminating the process of interpreting the information and
re-encoding it.

• ct_recvpassthru reads a packet of bytes from a server connection and
sets *recvptr to point to the buffer containing the bytes.

• Default packet sizes vary by platform. On most platforms, a packet
has a default size of 512 bytes. A connection can change its packet
size via ct_con_props.

• ct_recvpassthru returns CS_PASSTHRU_EOM if the TDS packet has been
marked by the server as EOM (End Of Message). If the TDS packet
is not marked EOM, ct_recvpassthru returns CS_PASSTHRU_MORE.

• A connection which is being used for a pass-through operation
cannot be used for any other Client-Library function until
CS_PASSTHRU_EOM has been received.

See Also

ct_getloginfo, ct_sendpassthru, ct_setloginfo

3-192 Routines

ct_remote_pwd Open Client Release 10.0

ct_remote_pwd

Function

Define or clear passwords to be used for server-to-server connections.

Syntax

CS_RETCODE ct_remote_pwd(connection, action,
server_name, snamelen, password,
pwdlen)

CS_CONNECTION *connection;
CS_INT action;
CS_CHAR *server_name;
CS_INT snamelen;
CS_CHAR *password;
CS_INT pwdlen;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

It is illegal to define remote passwords for a connection that is
open.

action – One of the following symbolic values:

server_name – A pointer to the name of the server for which the
password is being defined. *server_name is the name given to the
server in an interfaces file.

If server_name is NULL, the specified password will be considered a
“universal” password, to be used with any server that does not
have a password explicitly specified for it.

If action is CS_CLEAR, server_name must be NULL.

Value of action: ct_remote_pwd:

CS_SET Sets the remote password

CS_CLEAR Clears all remote passwords specified for this
connection by setting them to NULL.

Table 3-90: Values for action (ct_remote_pwd)

Client-Library/C Reference Manual 3-193

Open Client Release 10.0 ct_remote_pwd

snamelen – The length, in bytes, of *server_name. If *server_name is null-
terminated, pass snamelen as CS_NULLTERM.

If action is CS_SET and server_name is NULL, pass snamelen as 0 or
CS_UNUSED.

If action is CS_CLEAR, snamelen must be CS_UNUSED.

password – A pointer to the password being installed for remote logins
to the *server_name server.

If action is CS_CLEAR, password must be NULL.

pwdlen – The length, in bytes, of *password. If *password is null-termi-
nated, pass pnamelen as CS_NULLTERM.

If action is CS_SET and password is NULL, pass pwdlen as 0 or
CS_UNUSED.

If action is CS_CLEAR, pwdlen must be CS_UNUSED.

Returns

Comments

• ct_remote_pwd defines the password that a server will use when
logging into another server.

• A Transact-SQL language command or stored procedure running
on one server can call a stored procedure located on another server.
To accomplish this server-to-server communication, the first server
to which an application has connected via ct_connect, actually logs
into the second, remote server, performing a server-to-server
remote procedure call.

ct_remote_pwd allows an application to specify the password to be
used when the first server logs into the remote server.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-91: Return values (ct_remote_pwd)

3-194 Routines

ct_remote_pwd Open Client Release 10.0

• Multiple passwords may be specified, one for each server that a
server might need to log into. Each password must be defined with
a separate call to ct_remote_pwd.

• If an application does not specify a remote password for a
particular server, the password defaults to the password set for this
connection via ct_con_props, if any. If no password has been defined,
the password defaults to NULL. If an application user generally has
the same password on different servers, this default behavior may
be acceptable.

• Remote passwords are stored in an internal buffer which is only
255 bytes long. Each password’s entry in the buffer consists of the
password itself, the associated server name, and two extra bytes. If
the addition of a password to this buffer would cause overflow,
ct_remote_pwd returns CS_FAIL and generates a Client-Library error
message that indicates the problem.

• It is an error to call ct_remote_pwd to define a remote password for a
connection that is already open. Define remote passwords before
calling ct_connect to create an active connection.

• An application can call ct_remote_pwd to clear remote passwords for
a connection at any time.

See Also

ct_con_props, ct_connect

Client-Library/C Reference Manual 3-195

Open Client Release 10.0 ct_res_info

ct_res_info

Function

Retrieve current result set or command information.

Syntax

CS_RETCODE ct_res_info(cmd, type, buffer, buflen,
outlen)

CS_COMMAND *cmd;
CS_INT type;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server command.

type – The type of information to return. The table in the Summary of
Parameters section lists the symbolic values that are legal for type.

buffer – A pointer to the space in which ct_res_info will place the
requested information.

If buflen indicates that *buffer is not large enough to hold the
requested information, ct_res_info sets *outlen to the length of the
requested information and returns CS_FAIL.

buflen – The length, in bytes, of the *buffer data space, or CS_UNUSED if
*buffer represents a fixed-length or symbolic value.

outlen – A pointer to an integer variable.

ct_res_info sets *outlen to the length, in bytes, of the requested infor-
mation.

If the requested information is larger than buflen bytes, an appli-
cation can use the value of *outlen to determine how many bytes
are needed to hold the information.

3-196 Routines

ct_res_info Open Client Release 10.0

Summary of Parameters

Value of type: ct_res_info returns:
The information is available
after ct_results sets its
*result_type parameter to:

*buffer is set
to:

CS_BROWSE_INFO CS_TRUE if browse-mode
information is available;
CS_FALSE if browse-
mode information is not
available.

CS_ROW_RESULT CS_TRUE or
CS_FALSE.

CS_CMD_NUMBER The number of the
command that generated
the current result set.

Any value. An integer
value.

CS_MSGTYPE An integer representing
the id of the message that
makes up the current
result set.

CS_MSG_RESULT A small
integer.

CS_NUM_COMPUTES The number of compute
clauses in the current
command.

CS_COMPUTE_RESULT An integer
value.

CS_NUMDATA The number of items in the
current result set.

CS_COMPUTE_RESULT,
CS_COMPUTEFMT_RESULT,
CS_CURSOR_RESULT,
CS_DESCRIBE_RESULT,
CS_PARAM_RESULT,
CS_ROW_RESULT,
CS_ROWFMT_RESULT,
CS_STATUS_RESULT

An integer
value.

CS_NUMORDER
COLS

The number of columns
specified in the order-by
clause of the current
command.

CS_ROW_RESULT An integer
value.

CS_ORDERBY_COLS The select list id numbers
of columns specified in a
the order by clause of the
current command.

CS_ROW_RESULT An array of
integers.

CS_ROW_COUNT The number of rows
affected by the current
command.

CS_CMD_DONE,
CS_CMD_FAIL
CS_CMD_SUCCEED

An integer
value.

CS_TRANS_STATE The current server
transaction state.

Any value. A symbolic
value.

Table 3-92: Summary of parameters (ct_res_info)

Client-Library/C Reference Manual 3-197

Open Client Release 10.0 ct_res_info

Returns

Comments

• ct_res_info returns information about the current result set or the
current command. The current command is defined as the
command that generated the current result set.

• A result set is a collection of a single type of result data. Result sets
are generated by commands. For more information on result sets,
see the ct_results manual page and the Results topics page.

• Most typically, an application calls ct_res_info with type as
CS_NUMDATA, to determine the number of items in a result set.

Determining Whether Browse Mode Information is Available

• To determine whether browse-mode information is available, call
ct_res_info with type as CS_BROWSE_INFO.

• If browse-mode information is available, an application can call
ct_br_column and ct_br_table to retrieve the information. If browse-
mode information is not available, calling ct_br_column or ct_br_table
will result in a Client-Library error.

• For more information on browse mode, see the Browse Mode topics
page in Chapter 2 of this manual.

Retrieving the Command Number for Current Results

• To determine the number of the command that generated the
current results, call ct_res_info with type as CS_CMD_NUMBER.

• Client-Library keeps track of the command number by counting
the number of times ct_results returns CS_CMD_DONE.

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

ct_res_info returns CS_FAIL if the requested
information is larger than buflen bytes, or if there is
no current result set.

CS_BUSY An asynchronous operation is already pending for
this connection. For more information, see the
Asynchronous Programming topics page.

Table 3-93: Return values (ct_res_info)

3-198 Routines

ct_res_info Open Client Release 10.0

An application’s first call to ct_results following a ct_send call sets
the command number to 1. After this, it is incremented each time
ct_results is called after returning CS_CMD_DONE.

• CS_CMD_NUMBER is useful in the following cases:

- To find out which Transact-SQL command within a language
command generated the current result set.

- To find out which cursor command, in a batch of cursor
commands, generated the current result set.

- To find out which select command in a stored procedure
generated the current result set.

• A language command contains a string of Transact-SQL text. This
text represents one or more Transact-SQL commands. When used
against a language command, “command number” refers to the
number of the Transact-SQL command in the language command.

For example, the string:

select * from authors
select * from titles
insert newauthors

select *
from authors
where city = "San Francisco"

represents three Transact-SQL commands, two of which can
generate result sets. In this case, the command number that
ct_res_info returns can be from 1 to 3, depending on when
ct_res_info is called.

• Inside stored procedures, only select statements cause the
command number to be incremented. If a stored procedure
contains seven Transact-SQL commands, three of which are selects,
the command number that ct_res_info returns can be any integer
from 1 to 3, depending on which select generated the current result
set.

• ct_cursor is used to initiate a cursor command. Several cursor
commands can be defined, as a batch, before they are sent to a
server. When used against a cursor command batch, “command
number” refers to the number of the cursor command in the
command batch.

For example, an application can make the following calls:

Client-Library/C Reference Manual 3-199

Open Client Release 10.0 ct_res_info

ct_cursor(...CS_CURSOR_DECLARE...);
ct_cursor(...CS_CURSOR_ROWS...);
ct_cursor(...CS_CURSOR_OPEN...);
ct_send();

The command number that ct_res_info returns can be 1, 2, or 3,
depending on which cursor command generated the current
result type.

Retrieving a Message ID

• To retrieve a message id, call ct_res_info with type as CS_MSGTYPE.

• Servers can send messages to client applications. Messages are
received in the form of “message result sets.” Message result sets
contain no fetchable data, but rather have an id number.

• Messages can also have parameters. Message parameters are
returned to an application as a parameter result set, immediately
following the message result set.

Retrieving the Number of Compute Clauses

• To determine the number of compute clauses in the command that
generated the current result set, call ct_res_info with type as
CS_NUM_COMPUTES.

• A Transact-SQL select statement can contain compute clauses that
generate compute result sets.

Retrieving the Number of Result Data Items

• To determine the number of result data items in the current result
set, call ct_res_info with type as CS_NUMDATA.

• Results sets contain result data items. Row, cursor, and compute
result sets contain columns, a parameter result set contains
parameters, and a status result set contains a status. The columns,
parameters, and status are known as “result data items”.

• A message result set does not contain any data items.

Retrieving the Number of Columns in an Order-By Clause

• To determine the number of columns in a Transact-SQL select
statement’s order by clause, call ct_res_info with type as
CS_NUMORDERCOLS.

3-200 Routines

ct_res_info Open Client Release 10.0

• A Transact-SQL select statement can contain an order by clause,
which determines how the rows resulting from the select are
ordered on presentation.

Retrieving the Column ID’s of Order-By Columns

• To get the select list column id’s of order-by columns, call ct_res_info
with type as CS_ORDERBY_COLS.

• Columns named in an order by clause must also be named in the
select list of the select statement. Columns in a select list have a
“select list id,” which is the number in which they appear in the list.
For example, in the following query, au_lname and au_fname have
select list id’s of 1 and 2 respectively:

select au_lname, au_fname from authors
order by au_fname, au_lname

• Given the preceding query, the call:

ct_res_info(cmd, CS_ORDERBY_COLS, myspace, 8,
outlength)

sets *myspace to an array of two CS_INTs containing the integers 2
and 1.

Retrieving the Number of Rows for the Current Command

• To determine the number of rows affected by the current
command, call ct_res_info with type as CS_ROW_COUNT.

• An application can retrieve a row count after ct_results sets its
*result_type parameter to CS_CMD_SUCCEED, CS_CMD_DONE, or
CS_CMD_FAIL. A row count is guaranteed to be accurate if ct_results
has just set *result_type to CS_CMD_DONE.

• If the command is one that executes a stored procedure, for
example a Transact-SQL exec language command or a remote
procedure call command, ct_res_info sets *buffer to the number of
rows affected by the last statement in the stored procedure that
affects rows.

• ct_res_info sets *buffer to CS_NO_COUNT if any of the following are
true:

- The Transact-SQL command fails for any reason, such as a syntax
error.

- The command is one that never affects rows, such as a Transact-
SQL print command.

Client-Library/C Reference Manual 3-201

Open Client Release 10.0 ct_res_info

- The command executes a stored procedure that does not affect
any rows.

- The CS_OPT_NOCOUNT option is on.

Retrieving the Current Server Transaction State

• To determine the current server transaction state, call ct_res_info
with type as CS_TRANS_STATE.

• For more information about server transaction states, see ‘‘Server
Transaction States’’ on page 2-81.

Example

...CODE DELETED.....

CS_INT num_cols;

/*
** Determine the number of columns in this result
** set.
*/
retcode = ct_res_info (cmd, CS_NUMDATA, &num_cols,

CS_UNUSED, NULL);
if (retcode != CS_SUCCEED)
{

...CODE DELETED.....
}

...CODE DELETED.....

case CS_MSG_RESULT:
retcode = ct_res_info (cmd, CS_MSGTYPE,

(CS_VOID *)&msg_id, CS_UNUSED, NULL);
if (retcode != CS_SUCCEED)
{

...CODE DELETED.....
}
fprintf(stdout, "ct_result returned \

CS_MSG_RESULT where msg id = %d.\n", msg_id);
break;

...CODE DELETED.....

This code excerpt is from the rpc.c example program. For further
examples of using ct_res_info, see the compute.c, ex_alib.c, exutils.c, and
i18n.c example programs.

See Also

ct_cmd_props, ct_con_props, ct_results, Options

3-202 Routines

ct_results Open Client Release 10.0

ct_results

Function

Set up result data to be processed.

Syntax

CS_RETCODE ct_results(cmd, result_type)

CS_COMMAND *cmd;
CS_INT *result_type;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

result_type – A pointer to an integer variable which ct_results sets to
indicate the current type of result.

The following table lists the possible values of *result_type:

Value of *result_type: What it indicates: Result set contains:

Values that
indicate
command
status

CS_CMD_DONE The results of a
logical command
have been
completely
processed.

Not applicable.

CS_CMD_FAIL The server
encountered an error
while executing a
command.

No results.

CS_CMD_SUCCEED The success of a
command that
returns no data, such
as a language
command
containing a
Transact-SQL insert
statement.

No results.

Table 3-94: Values for *result_type (ct_results)

Client-Library/C Reference Manual 3-203

Open Client Release 10.0 ct_results

Returns

Values that
indicate
fetchable
results

CS_COMPUTE_RESULT Compute row
results.

A single row of compute results.

CS_CURSOR_RESULT Cursor row results. Zero or more rows of tabular data.

CS_PARAM_RESULT Return parameter
results.

A single row of return parameters.

CS_ROW_RESULT Regular row results. Zero or more rows of tabular data.

CS_STATUS_RESULT Stored procedure
return status results.

A single row containing a single
status.

Values that
indicate
information
is available.

CS_COMPUTEFMT_
RESULT

Compute format
information.

No fetchable results. An application
can call ct_describe, ct_res_info, and
ct_compute_info to retrieve compute
format information.

CS_ROWFMT_RESULT Row format
information.

No fetchable results. An application
can call ct_describe and ct_res_info to
retrieve row format information.

CS_MSG_RESULT Message arrival. No fetchable results. An application
can call ct_res_info to get the
message’s id. Parameters associated
with the message, if any, are returned
as a separate parameter result set.

CS_DESCRIBE_RESULT Dynamic SQL
descriptive
information.

No fetchable results. An application
can call ct_describe or ct_dyndesc to
retrieve the information.

Returns: To Indicate:

CS_SUCCEED A result set is available for processing.

CS_END_RESULTS All results have been completely processed.

Table 3-95: Return values (ct_results)

Value of *result_type: What it indicates: Result set contains:

Table 3-94: Values for *result_type (ct_results) (continued)

3-204 Routines

ct_results Open Client Release 10.0

Comments

• An application calls ct_results after sending a command to the
server via ct_send, and before reading the results of that command
(if any) via ct_fetch.

• “Result data” is an umbrella term for all the types of data that a
server can return to an application. These types of data include:

- Regular rows

- Cursor rows

- Return parameters

- Stored procedure return status numbers

- Compute rows

- Dynamic SQL descriptive information

- Regular row and compute row format information

- Messages

ct_results is used to set up all of these types of results for
processing

CS_FAIL The routine failed; any remaining results are no longer
available.

If ct_results returns CS_FAIL, an application must call
ct_cancel with type as CS_CANCEL_ALL before using
the affected command structure to send another
command.

If ct_cancel returns CS_FAIL, the application must call
cs_close(CS_FORCE_CLOSE) to force the connection
closed.

CS_CANCELED Results have been canceled.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the Asynchronous Programming topics
page.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Returns: To Indicate:

Table 3-95: Return values (ct_results) (continued)

Client-Library/C Reference Manual 3-205

Open Client Release 10.0 ct_results

➤ Note
 Don’t confuse message results with server error and informational messages.

See the Error and Message Handling topics page for a discussion of error and

informational messages.

• Result data is returned to an application in the form of a “result
set”. A result set includes only a single type of result data. For
example, a regular row result set contains only regular rows, and a
return parameter result set contains only return parameters.

The ct_results Loop

• Because a command can generate a result set that spans multiple
buffers, an application must call ct_results as long as it continues to
return CS_SUCCEED, indicating that results are available. The
simplest way to do this is in a loop that terminates when ct_results
fails to return CS_SUCCEED. After the loop, an application can use a
case-type statement to test ct_results’ final return code to determine
why the loop terminated.

• Results are returned to an application in the order in which they are
produced. However, this order is not always easy to predict. For
example, when an application calls a stored procedure that in turn
calls another stored procedure, the application might receive a
number of regular row and compute row result sets, as well as a
return parameter and a return status result set. The order in which
these results are returned depends on how the stored procedures
are written.

For this reason, it is recommended that an application’s ct_results
loop be coded so that control drops into a case-type statement that
handles all types of results that can be received. The return
parameter result_type indicates symbolically what type of result
data the result set contains.

When are the Results of a Command Completely Processed?

• ct_results sets *result_type to CS_CMD_DONE to indicate that the
results of a “logical command” have been completely processed.

• A logical command is defined as any command defined via
ct_command, ct_dynamic, or ct_cursor, with the following exceptions:

- Each Transact-SQL select statement inside a stored procedure is a
logical command. Other Transact-SQL statements inside stored
procedures do not count as logical commands.

3-206 Routines

ct_results Open Client Release 10.0

- Each Transact-SQL statement executed by a dynamic SQL
command is a distinct logical command.

- Each Transact-SQL statement in a language command is a logical
command.

• For example, suppose a Client-Library language command
contains the following Transact-SQL statements:

select type, price
from titles
order by type, price
compute sum(price) by type

select type, price, advance
from titles
order by type, advance
compute sum(price), max(advance) by type

When calling ct_results to process the results of this language
command, an application would see the following *result_types:

CS_ROW_RESULT Row and compute results from
CS_COMPUTE_RESULT the first select,
... repeated as many times as the

value of the type column
changes.

CS_CMD_DONE Indicates that the results
of the first query have been
processed.

CS_ROW_RESULT Row and compute results from
CS_COMPUTE_RESULT the second select,
... repeated as many times as the

value of the type column
changes.

CS_CMD_DONE Indicates that the results of
the second query have been
processed.

• A *result_type of CS_CMD_SUCCEED or CS_CMD_FAIL is immediately
followed by a *result_type of CS_CMD_DONE.

• A connection has pending results if it has not processed all of the
results generated by a Client-Library command. Usually, an
application cannot send a new command on a connection with
pending results. An exception to this rule occurs for
CS_CURSOR_RESULT results. For more information on this
exception, see “Connection and Command Rules” in Chapter 3,
“Structures, Datatypes, Constants, and Conventions,” of the Open
Client Client-Library Programmer’s Guide.

Client-Library/C Reference Manual 3-207

Open Client Release 10.0 ct_results

Canceling Results

• To cancel all remaining results from a command (and eliminate the
need to continue calling ct_results until it fails to return
CS_SUCCEED), call ct_cancel with type as CS_CANCEL_ALL.

• To cancel only the current results, call ct_cancel with type as
CS_CANCEL_CURRENT.

Special Kinds of Result Sets

• A message result set contains no actual result data. Rather, a
message has an “id”. An application can call ct_res_info to get a
message’s id. In addition to an id, messages can have parameters.
Message parameters are returned to an application as a parameter
result set, immediately following the message result set.

• Row format and compute format result sets contains no actual
result data. Instead, format result sets contain formatting
information for the regular row or compute row result sets with
which they are associated.

This type of format information is of use primarily in gateway
applications, which need to repackage SQL Server format infor-
mation before sending it to a foreign client. After ct_results
indicates format results, a gateway application can retrieve
format information by calling ct_describe, ct_res_info, and
ct_compute_info.

All format information for a command is returned before any
data. That is, the row format and compute format result sets for a
command precede the regular row and compute row result sets
generated by the command.

An application will not receive format results unless the Client-
Library CS_EXPOSE_FMTS property is set to CS_TRUE.

• A describe result set contains no actual result data. Instead, a
describe result set contains descriptive information generated by a
dynamic SQL describe input or describe output command. After
ct_results indicates describe results, an application can retrieve
information by calling ct_describe and ct_dyndesc.

ct_results and Stored Procedures

• A run-time error on a language command containing an execute
statement will generate a *result_type of CS_CMD_FAIL. For example,
this occurs if the procedure named in the execute statement cannot
be found.

3-208 Routines

ct_results Open Client Release 10.0

A run-time error on a statement inside a stored procedure will
not generate a CS_CMD_FAIL, however. For example, if the stored
procedure contains an insert statement and the user does not
have insert permission on the database table, the insert statement
will fail, but ct_results will still return CS_SUCCEED. To check for
run-time errors inside stored procedures, examine the proce-
dure’s return status number, which is returned as a return status
result set immediately following the row and parameter results,
if any, from the stored procedure. If the error generates a server
message, it is also available to the application.

Example

/*
** DoCompute(connection)
*/

CS_STATIC CS_RETCODE
DoCompute(connection)
CS_CONNECTION *connection;
{

CS_RETCODE retcode;
CS_COMMAND *cmd;
/* Result type from ct_results */
CS_INT res_type;

/* Use the pubs2 database */
...CODE DELETED.....

/*
** Allocate a command handle to send the compute
** query with.
*/
...CODE DELETED.....

/*
** Define a language command that contains a
** compute clause. SELECT is a select statment
** defined in the header file.
*/
...CODE DELETED.....

/* Send the command to the server */
...CODE DELETED.....

Client-Library/C Reference Manual 3-209

Open Client Release 10.0 ct_results

/*
** Process the results.
** Loop while ct_results() returns CS_SUCCEED.
*/
while ((retcode = ct_results (cmd, &res_type)) ==

CS_SUCCEED)
{

switch ((int)res_type)
{
case CS_CMD_SUCCEED:

/*
** Command returning no rows
** completed successfully.
*/
break;

case CS_CMD_DONE:
/*
** This means we're done with one result
** set.
*/
break;

case CS_CMD_FAIL:
/*
** This means that the server encountered
** an error while processing our command.
*/
ex_error("DoCompute: ct_results() \

returned CMD_FAIL");
break;

case CS_ROW_RESULT:
retcode = ex_fetch_data(cmd);
if (retcode != CS_SUCCEED)
{

ex_error("DoCompute: ex_fetch_data()\
failed");

return retcode;
}
break;

3-210 Routines

ct_results Open Client Release 10.0

case CS_COMPUTE_RESULT:
retcode = FetchComputeResults(cmd);
if (retcode != CS_SUCCEED)
{

ex_error("DoCompute: \
FetchComputeResults() failed");

return retcode;
}
break;

default:
/* We got an unexpected result type */
ex_error("DoCompute: ct_results() \

returned unexpected result type");
return CS_FAIL;

}
}

/*
** We've finished processing results. Let's check
** the return value of ct_results() to see if
** everything went ok.
*/
switch ((int)retcode)
{

case CS_END_RESULTS:
/* Everything went fine */
break;

case CS_FAIL:
/* Something went wrong */
ex_error("DoCompute: ct_results() \

failed");
return retcode;

default:
/* We got an unexpected return value */
ex_error("DoCompute: ct_results() \

returned unexpected result code");
return retcode;

}

/* Drop our command structure */
...CODE DELETED.....

return retcode;
}

This code excerpt is from the compute.c example program. For further
examples of using ct_results, see the csr_disp.c, ex_alib.c, exutils.c,
getsend.c, i18n.c, and rpc.c example programs.

Client-Library/C Reference Manual 3-211

Open Client Release 10.0 ct_results

See Also

ct_bind, ct_command, ct_cursor, ct_describe, ct_dynamic, ct_fetch, ct_send

3-212 Routines

ct_send Open Client Release 10.0

ct_send

Function

Send a command to the server.

Syntax

CS_RETCODE ct_send(cmd)

CS_COMMAND *cmd;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

Returns:

Comments

• Sending a command to a server is a four step process. To send a
command to a server, an application must:

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

For less serious failures, the application can call
ct_cancel(CS_CANCEL_ALL) to clean up the
command structure.

For more serious failures, the application must call
cs_close(CS_FORCE_CLOSE) to force the connection
closed.

CS_CANCELED The routine was canceled.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the Asynchronous Programming topics
page.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-96: Return values (ct_send)

Client-Library/C Reference Manual 3-213

Open Client Release 10.0 ct_send

- Initiate the command by calling ct_command, ct_cursor, or ct_dynamic.
These routines set up internal structures that are used in building
a command stream to send to the server.

- Pass parameters for the command (if required) by calling ct_param
once for each parameter that the command requires.

Not all commands require parameters. For example, a remote
procedure call command may or may not require parameters,
depending on the stored procedure being called.

- Send the command to the server by calling ct_send.

- Verify the success of the command by calling ct_results.

This last step does not imply that an application need only call
ct_results once. An application needs to continue calling ct_results
until it no longer returns CS_SUCCEED. See the Open Client
Client-Library/C Programmer’s Guide for a discussion of
processing results.

• An application can call ct_cancel(CS_CANCEL_ALL) to cancel a
command that has been initiated but not yet sent.

Once an application has sent a command, it must call ct_results
before calling ct_cancel to cancel the command.

• ct_send uses an asynchronous write and not does wait for a
response from the server. An application must call ct_results to
verify the success of the command and to set up the command
results for processing.

Example

/*
** ex_execute_cmd()
*/

CS_RETCODE CS_PUBLIC
ex_execute_cmd(connection, cmdbuf)
CS_CONNECTION *connection;
CS_CHAR *cmdbuf;
{

CS_RETCODE retcode;
CS_INT restype;
CS_COMMAND *cmd;
CS_RETCODE query_code;

3-214 Routines

ct_send Open Client Release 10.0

/*
** Get a command handle, store the command string
** in it, and send it to the server.
*/
if ((retcode = ct_cmd_alloc(connection, &cmd)) !=

 CS_SUCCEED)
{

ex_error("ex_execute_cmd: ct_cmd_alloc() \
failed");

return retcode;
}

if ((retcode = ct_command(cmd, CS_LANG_CMD,
cmdbuf, CS_NULLTERM, CS_UNUSED)) !=
CS_SUCCEED)

{
ex_error("ex_execute_cmd: ct_command() \

failed");
(void)ct_cmd_drop(cmd);
return retcode;

}

if ((retcode = ct_send (cmd)) != CS_SUCCEED)
{

ex_error("ex_execute_cmd: ct_send() failed");
(void)ct_cmd_drop(cmd);
return retcode;

}

/*
** Examine the results coming back. If any errors
** are seen, the query result code (which we will
** return from this function) will be set to FAIL.
*/
...CODE DELETED.....

/* Clean up the command handle used */
if (retcode == CS_END_RESULTS)
{

retcode = ct_cmd_drop(cmd);
if (retcode != CS_SUCCEED)
{

query_code = CS_FAIL;
}

}

Client-Library/C Reference Manual 3-215

Open Client Release 10.0 ct_send

else
{

(void)ct_cmd_drop(cmd);
query_code = CS_FAIL;

}

return query_code;
}

This code excerpt is from the exutils.c example program. For further
examples of using ct_send, see the compute.c, csr_disp.c, ex_alib.c,
getsend.c, i18n.c, and rpc.c example programs.

See Also

ct_command, ct_cursor, ct_dynamic, ct_fetch, ct_param, ct_results

3-216 Routines

ct_send_data Open Client Release 10.0

ct_send_data

Function

Send a chunk of text or image data to the server.

Syntax

CS_RETCODE ct_send_data(cmd, buffer, buflen)

CS_COMMAND *cmd;
CS_VOID *buffer;
CS_INT buflen;

Parameters

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

buffer – A pointer to the value to write to the server.

buflen – The length, in bytes, of *buffer.

CS_NULLTERM is not a legal value for buflen.

Returns

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_CANCELED The send data operation was canceled.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the Asynchronous Programming topics
page.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-97: Return values (ct_send_data)

Client-Library/C Reference Manual 3-217

Open Client Release 10.0 ct_send_data

Comments

• An application can use ct_send_data to write a text or image value to
a database column. This writing operation is actually an update; that
is, the column must have a value when ct_send_data is called to write
a new value.

This is because ct_send_data uses text timestamp information
when writing to the column, and a column does not have a valid
text timestamp until it contains a value. The value contained in
the text or image column can be NULL, but the NULL must be
entered explicitly with the SQL update statement.

• For information on the steps involved in using ct_send_data to
update a text or image column, see ‘‘Updating a Text or Image
Column’’ on page 2-190.

• In order to perform a send-data operation, an application must
have a current I/O descriptor, or CS_IODESC structure, describing
the column value that will be updated:

- The textptr field of the CS_IODESC identifies the target column.

- The timestamp field of the CS_IODESC is the text timestamp of the
column value. If timestamp does not match the current database
text timestamp for the value, the update operation will fail.

- The total_txtlen field of the CS_IODESC indicates the total length, in
bytes, of the column’s new value. An application must call
ct_send_data in a loop to write exactly this number of bytes before
calling ct_send to indicate the end of the text or image update
operation.

- The log_on_update of the CS_IODESC tells the server whether or not
to log the update operation.

- The locale field of the CS_IODESC points to a CS_LOCALE structure
that contains localization information for the new value, if any.

A typical application will change only the values of the locale,
total_txtlen, and log_on_update fields before using an I/O
descriptor in an update operation, but an application that is
updating the same column value multiple times will need to
change the value of the timestamp field as well.

• A successful text or image update generates a parameter result set
that contains the new text timestamp for the text or image value. If
an application plans to update the text or image value a second
time, it must save this new text timestamp and copy it into the
CS_IODESC for the value before calling ct_data_info to define the
CS_IODESC for the update operation.

3-218 Routines

ct_send_data Open Client Release 10.0

• A text or image update operation is equivalent to a language
command containing a Transact-SQL update statement.

• The command space identified by cmd must be idle before a text or
image update operation is initiated. A command space is idle if
there are no active commands, pending results, or open cursors in
the space.

• For more information on writing a text or image value, see‘‘Text
and Image’’ on page 2-188.

Example

/*
** UpdateTextData()
*/

CS_STATIC CS_RETCODE
UpdateTextData(connection, textdata, newdata)
CS_CONNECTION*connection;
TEXT_DATA *textdata;
char *newdata;
{

CS_RETCODE retcode;
CS_INT res_type;
CS_COMMAND *cmd;
CS_INT i;
CS_TEXT *txtptr;
CS_INT txtlen;

/*
** Allocate a command handle to send the text with
*/
...CODE DELETED.....

/*
** Inform Client-Library the next data sent will
** be used for a text or image update.
*/
if ((retcode = ct_command(cmd, CS_SEND_DATA_CMD,

NULL, CS_UNUSED, CS_COLUMN_DATA)) !=
CS_SUCCEED)

{
ex_error("UpdateTextData: ct_command() \

failed");
return retcode;

}

Client-Library/C Reference Manual 3-219

Open Client Release 10.0 ct_send_data

/*
** Fill in the description information for the
** update and send it to Client-Library.
*/
txtptr = (CS_TEXT *)newdata;
txtlen = strlen(newdata);
/*
** NOTE: The following is not needed...
**
strcpy(textdata->iodesc.name, "getsend_tbl.t");
textdata->iodesc.namelen = CS_NULLTERM;
*/
textdata->iodesc.total_txtlen = txtlen;
textdata->iodesc.log_on_update = CS_TRUE;
retcode = ct_data_info(cmd, CS_SET, CS_UNUSED,

&textdata->iodesc);
if (retcode != CS_SUCCEED)
{

ex_error("UpdateTextData: ct_data_info() \
failed");

return retcode;
}

/*
** Send the text one byte at a time. This is not
** the best thing to do for performance reasons,
** but does demonstrate that ct_send_data()
** can handle arbitrary amounts of data.
*/
for (i = 0; i < txtlen; i++, txtptr++)
{

retcode = ct_send_data (cmd, txtptr,
(CS_INT)1);

if (retcode != CS_SUCCEED)
{

ex_error("UpdateTextData: ct_send_data() \
failed");

return retcode;
}

}

3-220 Routines

ct_send_data Open Client Release 10.0

/*
** ct_send_data() writes to internal network
** buffers. To insure that all the data is
** flushed to the server, a ct_send() is done.
*/
if ((retcode = ct_send(cmd)) != CS_SUCCEED)
{

ex_error("UpdateTextData: ct_send() failed");
return retcode;

}

/* Process the results of the command */
while ((retcode = ct_results(cmd, &res_type)) ==

CS_SUCCEED)
{

switch ((int)res_type)
{

case CS_PARAM_RESULT:
/*
** Retrieve a description of the
** parameter data. Only timestamp data is
** expected in this example.
*/
retcode = ProcessTimestamp(cmd, textdata);
if (retcode != CS_SUCCEED)
{

ex_error("UpdateTextData: \
ProcessTimestamp() failed");

/*
** Something failed, so cancel all
** results.
*/
ct_cancel(NULL, cmd, CS_CANCEL_ALL);
return retcode;

}
break;

case CS_CMD_SUCCEED:
case CS_CMD_DONE:
/*
** This means that the command succeeded
** or is finished.
*/
break;

Client-Library/C Reference Manual 3-221

Open Client Release 10.0 ct_send_data

case CS_CMD_FAIL:
/*
** The server encountered an error while
** processing our command.
*/
ex_error("UpdateTextData: ct_results() \
returned CS_CMD_FAIL");
break;

default:
/*
** We got something unexpected.
*/
ex_error("UpdateTextData: ct_results() \

returned unexpected result type”);
/* Cancel all results */
ct_cancel(NULL, cmd, CS_CANCEL_ALL);
break;

}
}

/*
** We're done processing results. Let's check the
** return value of ct_results() to see if
** everything went ok.
*/
...CODE DELETED.....

return retcode;
}

This code excerpt is from the getsend.c example program.

See Also

ct_data_info, ct_get_data, Text and Image

3-222 Routines

ct_sendpassthru Open Client Release 10.0

ct_sendpassthru

Function

Send a TDS (Tabular Data Stream) packet to a server.

Syntax

CS_RETCODE ct_sendpassthru (cmd, sendptr)

CS_COMMAND *cmd;
CS_VOID *sendptr;

Parameters

cmd – A pointer to a CS_COMMAND structure.

sendptr – A pointer to a buffer containing the TDS packet to be sent to
the server.

Returns

Comments

• TDS is a communications protocol used for the transfer of requests
and request results between clients and servers. Under ordinary
circumstances, non-gateway applications do not usually have to
deal with TDS, because Client-Library manages the data stream.

Returns: To Indicate:

CS_PASSTHRU_MORE Packet sent successfully; more packets are
available.

CS_PASSTHRU_EOM Packet sent successfully; no more packets are
available.

CS_FAIL The routine failed.

CS_CANCELLED The routine was cancelled.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the Asynchronous Programming
topics page.

CS_BUSY An asynchronous operation is already pending for
this connection. For more information, see the
Asynchronous Programming topics page.

Table 3-98: Return values (ct_sendpassthru)

Client-Library/C Reference Manual 3-223

Open Client Release 10.0 ct_sendpassthru

• ct_recvpassthru and ct_sendpassthru are useful in gateway applications.
When an application serves as the intermediary between two
parties (such as a client and a remote server, or two servers), it can
use these routines to pass the TDS stream from one server to the
other, eliminating the process of interpreting the information and
re-encoding it.

• ct_sendpassthru sends a packet of bytes from the *sendptr buffer. Most
commonly, sendptr will be *recvptr as returned by srv_recvpassthru.
sendptr can also be the address of a user-allocated buffer containing
the packet to send.

• Default packet sizes vary by platform. On most platforms, a packet
has a default size of 512 bytes. A connection can change its packet
size via ct_con_props.

• ct_sendpassthru returns CS_PASSTHRU_EOM if the TDS packet in the
buffer is marked EOM (End Of Message). If the TDS packet is not
marked EOM, ct_sendpassthru returns CS_PASSTHRU_MORE.

• A connection which is being used for a pass-through operation
cannot be used for any other Client-Library function until
CS_PASSTHRU_EOM has been received.

See Also

ct_getloginfo, ct_recvpassthru, ct_setloginfo

3-224 Routines

ct_setloginfo Open Client Release 10.0

ct_setloginfo

Function

Transfer TDS login response information from a CS_LOGINFO structure
to a CS_CONNECTION structure.

Syntax

CS_RETCODE ct_setloginfo (connection, loginfo)

CS_CONNECTION *connection;
CS_LOGINFO *loginfo;

Parameters

connection – A pointer to a CS_CONNECTION structure. A CS_CON-
NECTION structure contains information about a particular client/
server connection.

loginfo – A pointer to a CS_LOGINFO structure.

Returns

Comments

• TDS (Tabular Data Stream) is a communications protocol used for
the transfer of requests and request results between clients and
servers.

• Because ct_setloginfo frees the CS_LOGINFO structure after
transferring the TDS information, an application cannot re-use the
CS_LOGINFO. An application can get a new CS_LOGINFO by calling
ct_getloginfo.

• There are two reasons an application might call ct_setloginfo:

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-99: Return values (ct_setloginfo)

Client-Library/C Reference Manual 3-225

Open Client Release 10.0 ct_setloginfo

- If it is an Open Server gateway application using TDS pass-
through.

- In order to copy login properties from an open connection to a
newly-allocated connection structure.

➤ Note
Do not call ct_setloginfo from within a completion callback routine. ct_setloginfo
calls system-level memory functions which may not be re-entrant.

TDS Pass-Through

• When a client connects directly to a server, the two programs
negotiate the TDS format they will use to send and receive data.
When a gateway application uses TDS pass-through, the gateway
forwards TDS packets between the client and a remote server
without examining or processing them. For this reason, the remote
server and the client must agree on a TDS format to use.

• ct_setloginfo is the second of four calls, two of them Server Library
calls, that allow a client and a remote server to negotiate a TDS
format. The calls, which can only be made in an Open Server
SRV_CONNECT event handler, are:

1. srv_getloginfo to allocate a CS_LOGINFO structure and fill it with TDS
information from a client login request.

2. ct_setloginfo to transfer the TDS information retrieved in step 1 from
the CS_LOGINFO structure to a Client-Library CS_CONNECTION
structure. The gateway uses this CS_CONNECTION structure in the
ct_connect call which establishes its connection with the remote
server.

3. ct_getloginfo to transfer the remote server’s response to the client’s
TDS information from the CS_CONNECTION structure into a
newly-allocated CS_LOGINFO structure.

4. srv_setloginfo to send the remote server’s response, retrieved in step
3, to the client.

Copying Login Properties

For information on using ct_setloginfo to copy login properties from an
open connection to a newly-allocated connection structure, see the
Properties topics page.

3-226 Routines

ct_setloginfo Open Client Release 10.0

See Also

ct_getloginfo, ct_recvpassthru, ct_sendpassthru

Client-Library/C Reference Manual 3-227

Open Client Release 10.0 ct_wakeup

ct_wakeup

Function

Call a connection’s completion callback.

Syntax

CS_RETCODE ct_wakeup(connection, cmd, function,
status)

CS_CONNECTION *connection;
CS_COMMAND *cmd;
CS_INT function;
CS_RETCODE status;

Parameters

connection – A pointer to the CS_CONNECTION structure whose
completion callback will be called. A CS_CONNECTION structure
contains information about a particular client/server connection.

Either connection or cmd must be non-NULL.

If connection is supplied, its completion callback is called. If
connection is NULL, cmd’s parent connection’s completion callback
is called.

If connection is supplied, it is passed as the connection parameter
to the completion callback. If connection is NULL, cmd’s parent
connection is passed as the connection parameter to the
completion callback.

cmd – A pointer to the CS_COMMAND structure managing a client/
server operation.

Either connection or cmd must be non-NULL.

If connection is NULL, cmd’s parent connection’s completion
callback is called.

cmd is passed as the command parameter to the completion
callback. If cmd is NULL then NULL is passed for the command
parameter.

3-228 Routines

ct_wakeup Open Client Release 10.0

function – A symbolic value indicating which routine has completed.
function can be a user-defined value. function is passed as the
function parameter to the completion callback. The following table
lists the symbolic values that are legal for function:

status – The return status of the completed routine. This value is passed
as the status parameter to the completion callback

Value of function: To indicate:

BLK_ROWXFER blk_rowxfer has completed.

BLK_SENDROW blk_sendrow has completed.

BLK_SENDTEXT blk_sendtext has completed.

BLK_TEXTXFER blk_textxfer has completed

CT_CANCEL ct_cancel has completed.

CT_CLOSE ct_close has completed.

CT_CONNECT ct_connect has completed.

CT_FETCH ct_fetch has completed.

CT_GET_DATA ct_get_data has completed.

CT_OPTIONS ct_options has completed.

CT_RECVPASSTHRU ct_recvpassthru has completed.

CT_RESULTS ct_results has completed.

CT_SEND ct_send has completed.

CT_SEND_DATA ct_send_data has completed.

CT_SENDPASSTHRU ct_sendpassthru has completed.

A user-defined value.
This value must be
greater than or equal to
CT_USER_FUNC.

A user-defined function has completed.

Table 3-100: Values for function (ct_wakeup)

Client-Library/C Reference Manual 3-229

Open Client Release 10.0 ct_wakeup

Returns

Comments

• ct_wakeup is intended for use in applications that create an
asynchronous layer on top of Client-Library.

• An application cannot call ct_wakeup if the CS_DISABLE_POLL
property is set to CS_TRUE.

• See the callbacks topics page for information on completion
callbacks.

• See the Asynchronous Programming topics page for more information
on using ct_wakeup in asynchronous Client-Library applications.

Example

...CODE DELETED.....

/* Force a wakeup on the connection handle */
retstat = ct_wakeup (connection, NULL,

EX_ASYNC_QUERY, status);
if (retstat != CS_SUCCEED)
{

return retstat;
}

...CODE DELETED.....

This code excerpt is from the ex_alib.c example program.

See Also

ct_callback, ct_poll

Returns: To Indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. For more information, see the
Asynchronous Programming topics page.

Table 3-101: Return values (ct_wakeup)

3-230 Routines

ct_wakeup Open Client Release 10.0

Appendixes

Client-Library/C Reference Manual A-1

array
A structure composed of multiple identical variables which can be individually
addressed.

array binding
The process of binding a result column to an array variable. At fetch time, multiple
rows’ worth of the column are copied into the variable.

batch
A group of commands or statements.

A Client-Library command batch is one or more Client-Library commands
terminated by an application’s call to ct_send. For example, an application can batch
together commands to declare, set rows for, and open a cursor.

A Transact-SQL statement batch is one or more Transact-SQL statements
submitted to SQL Server by means of a single Client-Library command or
Embedded SQL statement.

browse mode
Browse mode is a method that DB-Library and Client-Library applications can use
to browse through database rows, updating their values one row at a time. Cursors
provide similar functionality and are generally more portable and flexible.

bulk copy
A utility for copying data in and out of databases. Also called bcp.

callback
A routine that Open Client or Open Server calls in response to a triggering event,
known as a callback event.

callback event
In Open Client and Open Server, a callback event is an occurrence that triggers a
callback routine.

capabilities
A client/server connection’s capabilities determine the types of client requests and
server responses permitted for that connection.

A. GlossaryA

A-2 Glossary

 Open Client Release 10.0

character set
A set of specific (usually standardized) characters with an encoding scheme that
uniquely defines each character. ASCII and ISO 8859-1 (Latin 1) are two common
character sets.

character set conversion
Changing the encoding scheme of a set of characters on the way into or out of a
server. Conversion is used when a server and a client communicating with it use
different character sets. For example, if SQL Server uses ISO 8859-1 and a client
uses Code Page 850, character set conversion must be turned on so that both server
and client interpret the data passing back and forth in the same way.

client
In client/server systems, the client is the part of the system that sends requests to
servers and processes the results of those requests.

Client-Library
Part of Open Client, Client-Library is a collection of routines for use in writing
client applications. Client-Library is a new library, designed to accommodate
cursors and other advanced features in the SYBASE 10.0 product line.

code set
See character set.

collating sequence
See sort order.

command
In Client-Library, a command is a server request initiated by an application’s call to
ct_command, ct_dynamic, or ct_cursor and terminated by the application’s call to ct_send.

command structure
A command structure (CS_COMMAND) is a hidden Client-Library structure that
Client-Library applications use to send commands and process results.

connection structure
A connection structure (CS_CONNECTION) is a hidden Client-Library structure that
defines a client/server connection within a context.

Client-Library/C Reference Manual A-3

Open Client Release 10.0

context structure
A context structure (CS_CONTEXT) is a CS-Library hidden structure that defines an
application “context,” or operating environment, within a Client-Library or Open
Server application. The CS-Library routines cs_ctx_alloc and cs_ctx_drop allocate and
drop a context structure.

conversion
See character set conversion.

CS-Library
Included with both the Open Client and Open Server products, CS-Library is a
collection of utility routines that are useful to both Client-Library and Server-
Library applications.

current row
With respect to cursors, the current row is the row to which a cursor points. A fetch
against a cursor retrieves the current row.

cursor
A cursor is a symbolic name that is associated with a SQL statement.

In Embedded SQL, a cursor is a data selector that passes multiple rows of data to
the host program, one row at a time.

database
A set of related data tables and other database objects that are organized to serve a
specific purpose.

datatype
A defining attribute that describes the values and operations that are legal for a
variable.

DB-Library
Part of Open Client, DB-Library is a collection of routines for use in writing client
applications.

deadlock
A situation that arises when two users, each having a lock on one piece of data,
attempt to acquire a lock on the other’s piece of data. SQL Server detects deadlocks
and resolves them by killing one user’s process.

A-4 Glossary

 Open Client Release 10.0

default
Describes the value, option, or behavior that Open Client/Server products use
when none is explicitly specified.

default database
The database that a user gets by default when he or she logs in to a database server.

default language
1. The language that Open Client/Server products use when an application does
no explicit localization. The default language is determined by the “default” entry
in the locales file.

2. The language that SQL Server uses for messages and prompts when a user has
not explicitly chosen a language.

descriptor area
The area that a DBMS uses to store information about dynamic parameters in a
dynamic SQL statement.

dynamic SQL
Dynamic SQL allows an Embedded SQL or Client-Library application to execute
SQL statements containing variables whose values are determined at run-time.

error message
A message that an Open Client/Server product issues when it detects an error
condition.

event
An occurrence that prompts an Open Server application to take certain actions.
Client commands and certain commands within Open Server application code can
trigger events. When an event occurs, Open Server calls either the appropriate
event-handling routine in the application code or the appropriate default event
handler.

event handler
In Open Server, a routine that processes an event. An Open Server application can
use the default handlers Open Server provides or can install custom event
handlers.

Client-Library/C Reference Manual A-5

Open Client Release 10.0

exposed structure
An exposed structure is a structure whose internals are exposed to Open
Client/Server programmers. Open Client/Server programmers can declare,
manipulate, and de-allocate exposed structures directly. The CS_DATAFMT
structure is an example of an exposed structure.

extended transaction
In Embedded SQL, an extended transaction is a transaction composed of multiple
Embedded SQL statements.

FIPS
FIPS is an acronym for Federal Information Processing Standards. If FIPS flagging is
enabled, SQL Server or the Embedded SQL precompiler issue warnings when a
non-standard extension to a SQL statement is encountered.

gateway
A gateway is an application that acts as an intermediary for clients and servers that
cannot communicate directly. Acting as both client and server, a gateway
application passes requests from a client to a server and returns results from the
server to the client.

hidden structure
A hidden structure is a structure whose internals are hidden from Open
Client/Server programmers. Open Client/Server programmers must use Open
Client/Server routines to allocate, manipulate, and de-allocate hidden structures.
The CS_CONTEXT structure is an example of a hidden structure.

host language
The programming language in which an application is written.

host program
In Embedded SQL, the host program is the application program that contains the
Embedded SQL code.

host variable
In Embedded SQL, a variable which enables data transfer between SQL Server and
the application program. See also indicator variable, input variable, output
variable, result variable, and status variable.

indicator variable
A variable whose value indicates special conditions about another variable’s value
or about fetched data.

A-6 Glossary

 Open Client Release 10.0

When used with an Embedded SQL host variable, an indicator variable indicates
when a database value is null.

input variable
A variable that is used to pass information to a routine, a stored procedure, or SQL
Server.

interfaces file
A file that maps server names to transport addresses. When a client application
calls ct_connect or dbopen to connect to a server, Client-Library or DB-Library
searches the interfaces file for the server’s address. Note that not all platforms use
the interfaces file. On these platforms, an alternate mechanism directs clients to
server addresses.

isql script file
In Embedded SQL, an isql script file is one of the three files the precompiler can
generate. An isql script file contains precompiler-generated stored procedures,
which are written in Transact-SQL.

key
A subset of row data that uniquely identifies a row. Key data uniquely describes
the current row in an open cursor.

keyword
A word or phrase that is reserved for exclusive use in Transact-SQL or Embedded
SQL. Also called a reserved word.

listing file
In Embedded SQL, a listing file is one of the three files the precompiler can
generate. A listing file contains the input file’s source statements and
informational, warning, and error messages.

locale
The national environment in which a program is running. The locale determines
the language, sort order, and date/time formatting conventions.

locales file
A file that maps locale names to language/character set pairs. Open Client/Server
products search the locales file when loading localization information.

Client-Library/C Reference Manual A-7

Open Client Release 10.0

locale name
A character string that represents a language/character set pair. Locale names are
listed in the locales file. SYBASE predefines some locale names, but a system
administrator can define additional locale names and add them to the locales file.

locale structure
A locale structure (CS_LOCALE) is a CS-Library hidden structure that defines
custom localization values for a Client-Library or Open Server application. An
application can use a CS_LOCALE to define the language, character set, datepart
ordering, and sort order it will use. The CS-Library routines cs_loc_alloc and
cs_loc_drop allocate and drop a locale structure.

localization
Localization is the process of setting up an application to run in a particular
national language environment. An application that is localized typically
generates messages in a local language and character set and uses local datetime
formats.

login name
The name a user uses to log in to a server. A SQL Server login name is valid if SQL
Server has an entry for that user in the system table syslogins.

message number
A number that uniquely identifies an error message.

message queue
In Open Server, a linked list of message pointers through which threads
communicate. Threads can write messages into and read messages from the queue.

multi-byte character set
A character set that includes characters encoded using more than one byte. EUC JIS
and Shift-JIS are examples of multi-byte character sets.

mutex
A mutual exclusion semaphore. This is a logical object that an Open Server
application uses to ensure exclusive access to a shared object.

null
Having no explicitly assigned value. NULL is not equivalent to zero, or to blank. A
value of NULL is not considered to be greater than, less than, or equivalent to any
other value, including another value of NULL.

A-8 Glossary

 Open Client Release 10.0

Open Server
A SYBASE product than provides tools and interfaces for creating custom servers.

Open Server application
A custom server constructed with Open Server.

output variable
In Embedded SQL, a variable which passes data from a stored procedure to an
application program.

parameter
1. A variable that is used to pass data to and retrieve data from a routine.

2. An argument to a stored procedure.

pass-through mode
A state of being pertaining to gateway applications.

When in pass-through mode, a gateway relays Tabular Data Stream (TDS) packets
between a client and a remote data source without unpacking the packets’
contents.

property
A property is a named value stored in a structure. Context, connection, thread, and
command structures have properties. A structure’s properties determine how it
behaves.

query
1. A data retrieval request; usually a select statement.

2. Any SQL statement that manipulates data.

registered procedure
In Open Server, a collection of C statements stored under a name. Open Server-
supplied registered procedures are called system registered procedures.

remote procedure call
1. One of two ways in which a client application can execute a SQL Server stored
procedure. (The other is with a Transact-SQL execute statement.) A Client-Library
application initiates a remote procedure call command by calling ct_command. A
DB-Library application initiates a remote procedure call command by calling
dbrpcinit.

Client-Library/C Reference Manual A-9

Open Client Release 10.0

2. A type of request a client can make of an Open Server application. In response,
Open Server either executes the corresponding registered procedure or calls the
Open Server application’s RPC event handler.

3. A stored procedure executed on a different server from the server to which the
user is connected.

result variable
In Embedded SQL, a variable which receives the results of a select or fetch
statement.

server
In client/server systems, the server is the part of the system that processes client
requests and returns results to clients.

Server-Library
A collection of routines for use in writing Open Server applications.

sort order
Used to determine the order in which character data is sorted. Also called collating
sequence.

sqlca
1. In an Embedded SQL application, a SQLCA is a structure that provides a
communication path between SQL Server and the application program. After
executing each SQL statement, SQL Server stores return codes in the SQLCA.

2. In a Client-Library application, a SQLCA is a structure that the application can use
to retrieve Client-Library and server error and informational messages.

sqlcode
1. In an Embedded SQL application, a SQLCODE is a structure that provides a
communication path between SQL Server and the application program. After
executing each SQL statement, SQL Server stores return codes in the SQLCODE. A
SQLCODE can exist independently or as a variable within a SQLCA structure.

2. In a Client-Library application, a SQLCODE is a structure that the application can
use to retrieve Client-Library and server error and informational message codes.

SQL Server
A server in Sybase’s client/server architecture. SQL Server manages multiple
databases and multiple users, keeps track of the actual location of data on disks,
maintains mapping of logical data description to physical data storage, and
maintains data and procedure caches in memory.

A-10 Glossary

 Open Client Release 10.0

statement
In Transact-SQL or Embedded SQL, an instruction that begins with a keyword. The
keyword names the basic operation or command to be performed.

status variable
In Embedded SQL, a variable which receives the return status value of a stored
procedure, thereby indicating the procedure’s success or failure.

stored procedure
In SQL Server, a collection of SQL statements and optional control-of-flow
statements stored under a name. SQL Server-supplied stored procedures are called
system procedures.

System Administrator
The user in charge of server system administration, including creating user
accounts, assigning permissions, and creating new databases. On SQL Server, the
System Administrator’s login name is sa.

system descriptor
In Embedded SQL, a system descriptor is an area of memory that holds a
description of variables used in Dynamic SQL statements.

system procedures
Stored procedures that SQL Server supplies for use in system administration.
These procedures are provided as shortcuts for retrieving information from system
tables, or as mechanisms for accomplishing database administration and other
tasks that involve updating system tables.

system registered procedures
Internal registered procedures that Open Server supplies for registered procedure
notification and status monitoring.

target file
In Embedded SQL, a target file is one of the three files the precompiler can
generate. A target file is similar to the original input file, except that all SQL
statements are converted to Client-Library function calls.

TDS
(Tabular Data Stream) An application-level protocol that SYBASE clients and
servers use to communicate. It transfers requests and results between clients and
servers.

Client-Library/C Reference Manual A-11

Open Client Release 10.0

thread
A path of execution through Open Server application and library code and the
path’s associated stack space, state information, and event handlers.

Transact-SQL
Transact-SQL is an enhanced version of the database language SQL. Applications
can use Transact-SQL to communicate with SYBASE SQL Server.

transaction
One or more server commands that are treated as a single unit. Commands within
a transaction are committed as a group; that is, either all of them are committed or
all of them are rolled back.

transaction mode
Transaction mode refers to the manner in which SQL Server manages transactions.
SQL Server supports two transaction modes: Transact-SQL mode (also called
“unchained transactions”) and ANSI mode (also called “chained transactions”).

user name
See login name.

A-12 Glossary

 Open Client Release 10.0

Index

Client-Library/C Reference Manual 1

Index

A
action parameter 2-125
Advanced features

list of Client-Library features 1-18
Aggregate operator

retrieving for a compute column 3-59
types

CS_OP_AVG 3-61
CS_OP_COUNT 3-61
CS_OP_MAX 3-61
CS_OP_MIN 3-61
CS_OP_SUM 3-61

Allocating
a CS_COMMAND structure 3-43
a CS_CONNECTION structure 3-63
a CS_CONTEXT structure 1-7

Alternate servers
connecting to 3-85

ANSI cursor restriction 2-64
ANSI-style binds 2-137
Applications

application developer
responsibilities 2-179

application name property 2-137
layered 2-5
localized 2-84
steps in a simple program 1-9

APT-Edit Reference Manual xxiii
APT-Library Reference Manual xxiii
APT-SQL Reference Manual xxiii
APT-Workbench User’s Guide xxiii
Array

definition of A-1
Array binding 3-13

definition of A-1
Assertion checking 3-107
Asynchronous behavior

of Client-Library routines 2-3
CS_BUSY return 2-4
enabling using CS_NETIO property 2-3

Asynchronous programming 2-3 to 2-7

and ct_poll 3-185
and ct_wakeup 3-229
debugging affects behavior of timing

problems 3-107
defining a completion callback 2-19
disabling polling 2-141
fetching rows 3-143
layered applications 2-5

and ct_callback 2-6
and ct_poll 2-6
and ct_wakeup 2-5
example 2-6
preventing reporting of

asynchronous routine
completions 2-5

learning of asynchronous routine
completion 2-3

list of asynchronous routines 2-3
and memory pool property 2-4
memory requirements 2-4, 2-146,

2-153, 2-154
routines callable when operation

pending 2-4
setting up deferred asynchronous

connections 2-147
and user allocation function

properties 2-5

B
Backup servers

connecting to 3-85
Batch

definition of A-1
Binary datatypes 2-195
Binding

array binding 3-13
binding columns to arrays 3-13
binding large values 3-11
binding results to program

variables 3-7

2 Index

Open Client Release 10.0

binding to multiple variables not
allowed 3-12

clearing bindings 3-8, 3-12
and ct_describe 3-11
and ct_res_info 3-11
defining a bind style 2-136
how long it remains in effect 3-12
purpose 3-11
re-binding 3-12
using ct_get_data instead 3-11

Bit datatype 2-196
Bits

CS_CANBENULL 2-52, 3-111
CS_HIDDEN 2-9, 2-52, 3-111
CS_IDENTITY 2-52, 3-111
CS_INPUTVALUE 2-53
CS_KEY 2-52, 3-111
CS_RETURN 2-53
CS_TIMESTAMP 2-9, 2-53, 3-111
CS_UPDATABLE 2-52, 3-111
CS_UPDATECOL 2-53
CS_VERSION_KEY 2-52, 3-111

BLK_ROWXFER completion id 3-186,
3-228

BLK_SENDROW completion id 3-186,
3-228

BLK_SENDTEXT completion id 3-186,
3-228

BLK_TEXTXFER completion id 3-186,
3-228

blktxt.c sample program 2-172
Boundary labels 2-178
Browse mode 2-8 to 2-10

ad-hoc queries and ct_br_column 2-8
ad-hoc queries and ct_br_table 2-8
browsable table attributes 3-19
conditions for updating a

column 3-17
conditions for using 2-10
connection requirements 2-8
and CS_BROWSEDESC structure 2-43
and CS_HIDDEN_KEYS property 2-9
definition of A-1
purpose 2-8

retrieving information about a browse
mode column 3-16

retrieving information about browse
mode tables 3-18

select...for browse command 2-9
steps to implement 2-9
when browse mode information is

available 3-17, 3-197
buffer parameter 2-125
buflen parameter 2-125
Bulk copy

bulk copy operations property 2-138
copies into Secure SQL Server 2-178
and CS_IODESC structure 2-54
definition of A-1
describing bulk copy data 2-54

C
Callback events 2-11

definition of A-1
information can be discarded 2-14
recognizing 2-11
when not reading from network 2-11

Callback types
CS_CHALLENGE_CB 3-22
CS_CLIENTMSG_CB 3-22
CS_COMPLETION_CB 3-22
CS_ENCRYPT_CB 3-22
CS_MESSAGE_CB 3-22
CS_NOTIF_CB 3-22
CS_SERVERMSG_CB 3-22
CS_SIGNAL_CB 3-22

Callbacks 2-11 to 2-32
advantages over in-line message

handling 2-74
and asynchronous programming 2-3
client message callback 2-12, 2-16

See Client message callback
Client-Library routines they can

call 2-15
completion callback 2-12, 2-19

See Completion callback
and ct_poll 2-11

Client-Library/C Reference Manual 3

Open Client Release 10.0

defining callback routines 2-15
definition of A-1
de-installing 2-14, 3-23
description of when called 2-11
encryption callback 2-12, 2-22

See Encryption callback
how triggered 2-12
implications of inheritance 3-24
information can be discarded 3-24
inheriting callback routines from the

parent context 3-23
installing 2-13, 3-21, 3-23
negotiation callback 2-12, 2-24

See Negotiation callback
not supported by all

languages/platforms 1-15
not universally implemented 2-13
notification callback 2-13, 2-27

See Notification callback
replacing callback routines 2-14
retrieving 3-21
retrieving a pointer to 2-14
server message callback 2-13, 2-28

See Server message callback
sharing information with main-line

application 2-154
signal callback 2-13, 2-31

See Signal callback
triggered on asynchronous routine

completion 2-3
types of 2-12, 3-22
using CS_USERDATA to transfer

information 3-24
when called 2-12
when called at interrupt level 2-11

Cancel types
CS_CANCEL_ALL 3-27
CS_CANCEL_ATTN 3-27
CS_CANCEL_CURRENT 3-27

Canceling
affect on binding 3-30
commands 3-26
current results 3-207
remaining results 3-207

results 3-26
danger of discarding results 3-29

Capabilities 2-33 to 2-34
before and after opening a

connection 3-36
and connections 3-36
CS_CAP_REQUEST capabilities 3-31
CS_CAP_RESPONSE capabilities 3-32
CS_CLR_CAPMASK macro 3-38
CS_SET_CAPMASK macro 3-38
CS_TDS_VERSION property 3-37
CS_TST_CAPMASK macro 3-38
and ct_capability 3-37
definition of A-1
how capabilities are determined 3-37
setting and retrieving 2-33, 3-31
setting and retrieving multiple

capabilities 3-37
storing connection information 2-115
TDS version level 3-37
types of 2-33, 3-31
uses of 2-33, 3-36

Challenge/response security
handshakes 2-176

negotiation callbacks 2-24
Character datatypes 2-196
Character sets

character set conversion
definition of A-2

character set conversion
property 2-138

definition of A-2
specifying 2-84

Chunked messages 2-77
Client message callback 2-16

Client-Library routines it can call 2-18
defining 2-16
example 2-18
exceptional behavior 2-14, 3-24
how triggered 2-12
installing 3-22
valid return values 2-17
when called 2-12

4 Index

Open Client Release 10.0

when Client-Library fails to call
it 2-76

Client messages 2-74
Client/server

architecture 1-1 to 1-3
advantages 1-1

communication 2-114
diagram of interaction 1-1

Client-Library
advanced features 1-18
backward-compatibility 3-159
comparing to Embedded SQL 1-6
datatypes 2-193
definition of 1-6, A-2
description of contents 1-6
exiting 3-137
generic interface 1-6
global properties 3-77
handling Client-Library errors 2-74
initializing 3-158
properties 2-128
re-initializing 3-138
routines that initiate commands 2-38
sample programs 2-172
typedefs 2-195
user-defined datatypes 2-200
version 3-159
version property 2-156
version string property 2-156

Client-Library cursor commands
initiating 3-89
sending to a server 3-91

Client-Library cursors 2-41
initiating a command 3-89
See Cursors

Client-Library messages 2-35 to 2-37
explanation of severities 2-36
interpreting 2-35
macros to decode message

numbers 2-35
mapping to SQLCODE structure 2-183

Clients
definition of A-2
types of clients 1-2

what they do 1-1
Closing a server connection 3-39
Collating sequences

specifying 2-84
Columns

binding to program variables 3-7
retrieving a column 3-148
retrieving descriptions of 3-109
retrieving information about a browse

mode column 3-16
retrieving the column id’s of order-by

columns 3-200
retrieving the number of columns in

an order-by clause 3-199
Command options

CS_BULK_CONT 3-52
CS_BULK_DATA 3-52
CS_BULK_INIT 3-52
CS_COLUMN_DATA 3-52
CS_NORECOMPILE 3-52
CS_RECOMPILE 3-52
CS_UNUSED 3-52

Command parameters
defining 3-174

Command structure
allocating 3-43
definition of A-2
dropping 3-45
properties 3-47
what to do before de-allocating a

command structure 3-46
Command types

CS_LANG_CMD 3-53
CS_MSG_CMD 3-53
CS_PACKAGE_CMD 3-53
CS_RPC_CMD 3-53
CS_SEND_BULK_CMD 3-53
CS_SEND_DATA_CMD 3-53

Commands
canceling 3-26, 3-213
clearing an initiated command 3-54
Client-Library routines that initiate

commands 2-38
current command information 3-195

Client-Library/C Reference Manual 5

Open Client Release 10.0

definition of A-2
different routines for similar

tasks 2-39
initiating 3-51
initiating a prepared dynamic SQL

statement command 3-122
language commands 3-54
message commands 3-55
package commands 3-55
retrieving the command number for

the current result set 3-197
RPC commands 3-56
rules for using ct_command 3-54
send-bulk-data commands 3-56
send-data commands 3-56
sending to a server 2-38, 3-53, 3-212
steps in sending a command to a

server 3-212
types of 2-38

Communications sessions block
property 2-138

Completion
of asynchronous routine 2-3

Completion callback 2-3, 2-19
calling 3-227
Client-Library routines that it can

call 2-20
defining 2-19
example 2-21
how triggered 2-12
installing 3-22
purpose 2-19
valid return value 2-20
when called 2-12

Completion callback event
when it occurs 2-11

Completion ids
BLK_ROWXFER 3-186, 3-228
BLK_SENDROW 3-186, 3-228
BLK_SENDTEXT 3-186, 3-228
BLK_TEXTXFER 3-186, 3-228
CT_CANCEL 3-186, 3-228
CT_CLOSE 3-186, 3-228
CT_CONNECT 3-186, 3-228

CT_FETCH 3-186, 3-228
CT_GET_DATA 3-186, 3-228
CT_NOTIFICATION 3-186
CT_OPTIONS 3-186, 3-228
CT_RECVPASSTHRU 3-186, 3-228
CT_RESULTS 3-186, 3-228
CT_SEND 3-186, 3-228
CT_SEND_DATA 3-186, 3-228
CT_SENDPASSTHRU 3-186, 3-228
CT_USER_FUNC 3-186, 3-228

Compute clause
bylist 3-60
retrieving the number of compute

clauses 3-199
Compute columns

aggregate operator 3-61
binding to program variables 3-7,

3-109
retrieving a compute column 3-148
retrieving descriptions of 3-109
select-list id 3-60

Compute format results 3-207
Compute id

retrieving for a compute row 3-59
Compute result information types

CS_BYLIST_LEN 3-59
CS_COMP_BYLIST 3-59
CS_COMP_COLID 3-59
CS_COMP_ID 3-59
CS_COMP_OP 3-59

Compute results 2-166
fetching 3-145
information about 3-58
retrieving a bylist 3-59
retrieving a compute row’s id 3-59
retrieving a select-list column id 3-59
retrieving an aggregate operator 3-59
retrieving the number of bylist

items 3-59
Compute row

definition 3-60
id 3-60
processing 3-204

compute.c sample program 2-172

6 Index

Open Client Release 10.0

Configuring Client-Library 3-77
Connecting to a server 3-63, 3-83
Connection status property 2-138
Connection structure

allocating 3-63
definition of A-2
dropping 3-66

Connection structure properties
setting and retrieving 3-68

Connections
and CS_CONNECTION structure 3-84
calling a completion callback 3-227
and capabilities 3-36
changing TDS version level 2-33
closing 3-39, 3-40, 3-138
CS_FORCE_CLOSE behavior 3-41
CS_FORCE_CLOSE option 3-39
and CS_MAX_CONNECT property 3-64
de-allocating a connection 3-40
default close behavior 3-41
default TDS version level 2-33
defining behavior 3-69
defining login parameters with

ct_con_props 3-84
determining if dead 2-138, 3-28, 3-40
determining status of 2-138
failure to connect 3-85
forcing a close 3-40
inheriting parent context’s

callbacks 2-14
inheriting parent context’s property

values 3-69
maximum number of

connections 3-85
negotiating the TDS version

level 2-34
opening 3-83
pending results 3-206
polling for asynchronous operation

completions and registered
procedure notifications 3-185

reviving a dead connection 3-40
setting maximum number of 2-146
synchronous or asynchronous 3-85

using asynchronous network
I/O 3-41

using ct_cancel to revive a dead
connection 3-28

Constants
CS_ALL_CAPS 2-34
CS_ASYNC_IO 2-3
CS_BUSY 2-3
CS_DEF_PREC 2-51, 2-52
CS_FAIL 2-16
CS_MAX_MSG 2-77
CS_MAX_PREC 2-52
CS_MAX_SCALE 2-51
CS_MIN_PREC 2-52
CS_MIN_SCALE 2-51
CS_MSG_GETLABELS 2-25
CS_MSG_LABELS 2-25
CS_NULLTERM 2-50
CS_SRC_VALUE 2-51, 2-52
CS_USER_MAX_MSGID 2-25
CS_USER_MSGID 2-25

Context properties 3-77
and cs_config 2-129, 3-79
and ct_config 2-129, 3-79
and srv_props 2-129, 3-79
types of context properties 3-78

Context structure
definition of A-3

Control structures
See Structures, control

Conversion
between client and server character

sets 2-138
Critical code

protecting with CS_NOINTERRUPT
property 2-149

CS_ALL_CAPS constant 2-34, 3-32
CS_ALLMSG_TYPE message type 3-114
CS_ALLOC descriptor area

operation 3-127
CS_ANSI_BINDS property 2-130, 3-70,

3-79
detailed description of 2-136

CS_APPNAME property 2-130, 3-70

Client-Library/C Reference Manual 7

Open Client Release 10.0

detailed description of 2-137
CS_ASYNC_IO constant 2-3
CS_ASYNC_NOTIFS property 2-130, 3-70

and ct_poll 3-188
detailed description of 2-137

CS_BINARY datatype 2-195
CS_BIT datatype 2-196
CS_BLKDESC structure 2-185
CS_BOUNDARY_TYPE datatype 2-178,

2-200
CS_BROWSE_INFO information

type 3-196
CS_BROWSEDESC structure 2-43, 2-186
CS_BULK_CONT command option 3-52
CS_BULK_DATA command option 3-52
CS_BULK_INIT command option 3-52
CS_BULK_LOGIN property 2-130, 3-70

detailed description of 2-138
CS_BUSY constant 2-3

meaning of 2-4
CS_BYLIST_LEN compute result

information type 3-59
CS_CANBENULL bit 2-52, 3-111
CS_CANCEL_ALL cancel type 3-27

difference from
CS_CANCEL_ATTN 3-28

when not to use 3-30
when to use 3-29

CS_CANCEL_ATTN cancel type 3-27
difference from CS_CANCEL_ALL 3-28
reusing a command structure 3-29
when not to use 3-30
when to use 3-29

CS_CANCEL_CURRENT cancel type 3-27
when to use 3-30

CS_CANCELED return 3-141, 3-149
CS_CAP_REQUEST capabilities 3-31

CS_CON_INBAND 3-32
CS_CON_OOB 3-32
CS_CSR_ABS 3-32
CS_CSR_FIRST 3-32
CS_CSR_LAST 3-32
CS_CSR_MULTI 3-32
CS_CSR_PREV 3-32

CS_CSR_REL 3-32
CS_DATA_BIN 3-32
CS_DATA_BIT 3-33
CS_DATA_BITN 3-33
CS_DATA_BOUNDARY 3-33
CS_DATA_CHAR 3-33
CS_DATA_DATE4 3-33
CS_DATA_DATE8 3-33
CS_DATA_DATETIMEN 3-33
CS_DATA_DEC 3-33
CS_DATA_FLT4 3-33
CS_DATA_FLT8 3-33
CS_DATA_FLTN 3-33
CS_DATA_IMAGE 3-33
CS_DATA_INT1 3-33
CS_DATA_INT2 3-33
CS_DATA_INT4 3-33
CS_DATA_INTN 3-33
CS_DATA_LBIN 3-33
CS_DATA_LCHAR 3-33
CS_DATA_MNY4 3-33
CS_DATA_MNY8 3-33
CS_DATA_MONEYN 3-33
CS_DATA_NUM 3-33
CS_DATA_SENSITIVITY 3-33
CS_DATA_TEXT 3-33
CS_DATA_VBIN 3-32
CS_DATA_VCHAR 3-33
CS_OPTION_GET 3-33
CS_PROTO_BULK 3-33
CS_PROTO_DYNAMIC 3-33
CS_PROTO_DYNPROC 3-34
CS_REQ_BCP 3-34
CS_REQ_CURSOR 3-34
CS_REQ_DYN 3-34
CS_REQ_LANG 3-34
CS_REQ_MSG 3-34
CS_REQ_MSTMT 3-34
CS_REQ_NOTIF 3-34
CS_REQ_PARAM 3-34
CS_REQ_RPC 3-34
CS_REQ_URGNOTIF 3-34
meaning of 2-33

CS_CAP_RESPONSE capabilities 3-32

8 Index

Open Client Release 10.0

CS_CON_NOINBAND 3-34
CS_CON_NOOOB 3-34
CS_DATA_NOBIN 3-34
CS_DATA_NOBIT 3-34
CS_DATA_NOBOUNDARY 3-34
CS_DATA_NOCHAR 3-34
CS_DATA_NODATE4 3-35
CS_DATA_NODATE8 3-35
CS_DATA_NODATETIMEN 3-35
CS_DATA_NODEC 3-35
CS_DATA_NOFLT4 3-35
CS_DATA_NOFLT8 3-35
CS_DATA_NOIMAGE 3-35
CS_DATA_NOINT1 3-35
CS_DATA_NOINT2 3-35
CS_DATA_NOINT4 3-35
CS_DATA_NOINT8 3-35
CS_DATA_NOINTN 3-35
CS_DATA_NOLBIN 3-34
CS_DATA_NOLCHAR 3-34
CS_DATA_NOMNY4 3-35
CS_DATA_NOMNY8 3-35
CS_DATA_NOMONEYN 3-35
CS_DATA_NONUM 3-35
CS_DATA_NOSENSITIVITY 3-35
CS_DATA_NOTEXT 3-35
CS_DATA_NOVBIN 3-34
CS_DATA_NOVCHAR 3-34
CS_RES_NOEED 3-35
CS_RES_NOMSG 3-35
CS_RES_NOPARAM 3-35
CS_RES_NOSTRIPBLANKS 3-35
CS_RES_NOTDSDEBUG 3-35
meaning of 2-33

CS_CAP_TYPE structure 2-185
manipulating bits 2-115

CS_CHALLENGE_CB callback type 3-22
CS_CHAR datatype 2-196
CS_CHARSETCNV property 2-130, 3-70

detailed description of 2-138
CS_CLEAR action 3-47, 3-77
CS_CLEAR operation 3-115
CS_CLEAR_FLAG debug operation 3-106
CS_CLIENTMSG structure 2-45, 2-186

CS_CLIENTMSG_CB callback type 3-22
CS_CLIENTMSG_TYPE structure

type 3-114
CS_CLR_CAPMASK macro 2-34, 2-115, 3-38
CS_CMD_DONE result type 3-202
CS_CMD_FAIL result type 3-202
CS_CMD_NUMBER information

type 3-196
when useful 3-198

CS_CMD_SUCCEED result type 3-202
CS_COLUMN_DATA command

option 3-52
CS_COMMAND structure 1-7, 2-185

allocating 3-43
de-allocating 3-45
definition 3-43
dropping 3-45

CS_COMMBLOCK property 2-130, 3-71
detailed description of 2-138

CS_COMP_BYLIST compute result
information type 3-59

CS_COMP_COLID compute result
information type 3-59

CS_COMP_ID compute result information
type 3-59

CS_COMP_OP compute result
information type 3-59

CS_COMPLETION_CB callback type 3-22
CS_COMPUTE_RESULT result type 3-60,

3-143, 3-203
CS_COMPUTEFMT_RESULT format result

set 2-142
CS_COMPUTEFMT_RESULT result

type 3-203
CS_CON_INBAND capability 3-32
CS_CON_NOINBAND capability 3-34
CS_CON_NOOOB capability 3-34
CS_CON_OOB capability 3-32
CS_CON_STATUS property 2-131, 3-71

detailed description of 2-138
CS_CONNECTION structure 1-7, 2-185

allocating 3-63
de-allocating 3-66
dropping 3-66

Client-Library/C Reference Manual 9

Open Client Release 10.0

CS_CONSTAT_CONNECTED symbol 2-139
CS_CONSTAT_DEAD symbol 2-139
CS_CONTEXT structure 1-7, 2-185

properties 3-77
CS_CSR_ABS capability 3-32
CS_CSR_FIRST capability 3-32
CS_CSR_LAST capability 3-32
CS_CSR_MULTI capability 3-32
CS_CSR_PREV capability 3-32
CS_CSR_REL capability 3-32
CS_CUR_ID property 2-131, 3-49

detailed description of 2-139
CS_CUR_NAME property 2-131, 3-49

detailed description of 2-139
CS_CUR_ROWCOUNT property 2-131,

3-49
detailed description of 2-140

CS_CUR_STATUS property 2-131, 3-49
detailed description of 2-140

CS_CURSOR_CLOSE cursor command
type 3-90

CS_CURSOR_DEALLOC cursor command
type 3-90

CS_CURSOR_DECLARE cursor command
type 3-90

CS_CURSOR_DECLARE dynamic SQL
operation 3-123

CS_CURSOR_DELETE cursor command
type 3-90

CS_CURSOR_OPEN cursor command
type 3-90

CS_CURSOR_OPTION cursor command
type 3-90

CS_CURSOR_RESULT result type 3-143,
3-203

CS_CURSOR_ROWS cursor command
type 3-90

CS_CURSOR_UPDATE cursor command
type 3-91

CS_CURSTAT_CLOSED symbol 2-140
CS_CURSTAT_DECLARED symbol 2-140
CS_CURSTAT_NONE symbol 2-140
CS_CURSTAT_OPEN symbol 2-140
CS_CURSTAT_RDONLY symbol 2-140

CS_CURSTAT_UPDATABLE symbol 2-140
CS_DATA_BIN capability 3-32
CS_DATA_BIT capability 3-33
CS_DATA_BITN capability 3-33
CS_DATA_BOUNDARY capability 3-33
CS_DATA_CHAR capability 3-33
CS_DATA_DATE4 capability 3-33
CS_DATA_DATE8 capability 3-33
CS_DATA_DATETIMEN capability 3-33
CS_DATA_DEC capability 3-33
CS_DATA_FLT4 capability 3-33
CS_DATA_FLT8 capability 3-33
CS_DATA_FLTN capability 3-33
CS_DATA_IMAGE capability 3-33
CS_DATA_INT1 capability 3-33
CS_DATA_INT2 capability 3-33
CS_DATA_INT4 capability 3-33
CS_DATA_INTN capability 3-33
CS_DATA_LBIN capability 3-33
CS_DATA_LCHAR capability 3-33
CS_DATA_MNY4 capability 3-33
CS_DATA_MNY8 capability 3-33
CS_DATA_MONEYN capability 3-33
CS_DATA_NOBIN capability 3-34
CS_DATA_NOBIT capability 3-34
CS_DATA_NOBOUNDARY capability 3-34
CS_DATA_NOCHAR capability 3-34
CS_DATA_NODATE4 capability 3-35
CS_DATA_NODATE8 capability 3-35
CS_DATA_NODATETIMEN capability 3-35
CS_DATA_NODEC capability 3-35
CS_DATA_NOFLT4 capability 3-35
CS_DATA_NOFLT8 capability 3-35
CS_DATA_NOIMAGE capability 3-35
CS_DATA_NOINT1 capability 3-35
CS_DATA_NOINT2 capability 3-35
CS_DATA_NOINT4 capability 3-35
CS_DATA_NOINT8 capability 3-35
CS_DATA_NOINTN capability 3-35
CS_DATA_NOLBIN capability 3-34
CS_DATA_NOLCHAR capability 3-34
CS_DATA_NOMNY4 capability 3-35
CS_DATA_NOMNY8 capability 3-35
CS_DATA_NOMONEYN capability 3-35

10 Index

Open Client Release 10.0

CS_DATA_NONUM capability 3-35
CS_DATA_NOSENSITIVITY capability 3-35
CS_DATA_NOTEXT capability 3-35
CS_DATA_NOVBIN capability 3-34
CS_DATA_NOVCHAR capability 3-34
CS_DATA_NUM capability 3-33
CS_DATA_SENSITIVITY capability 3-33
CS_DATA_TEXT capability 3-33
CS_DATA_VBIN capability 3-32
CS_DATA_VCHAR capability 3-33
CS_DATAFMT structure 2-49, 2-186

and ct_bind 3-8
and ct_describe 3-110

CS_DATETIME datatype 2-197
CS_DATETIME4 datatype 2-197
CS_DBG_ALL debug flag 3-105
CS_DBG_API_STATES debug flag 3-105
CS_DBG_ASYNC debug flag 3-105
CS_DBG_DIAG debug flag 3-105
CS_DBG_ERROR debug flag 3-105
CS_DBG_MEM debug flag 3-105
CS_DBG_NETWORK debug flag 3-105
CS_DBG_PROTOCOL debug flag 3-105
CS_DBG_PROTOCOL_STATES debug

flag 3-105
CS_DEALLOC descriptor area

operation 3-127
CS_DEALLOC dynamic SQL

operation 3-123
CS_DECIMAL datatype 2-198
CS_DEF_PREC constant 2-51, 2-52
CS_DESCRIBE_INPUT dynamic SQL

operation 3-123
CS_DESCRIBE_OUTPUT dynamic SQL

operation 3-123
CS_DESCRIBE_RESULT result type 3-203
CS_DIAG_TIMEOUT property 2-131, 3-71

detailed description of 2-141
and in-line message handling 2-76

CS_DISABLE_POLL property 2-132, 3-71,
3-79

and ct_poll 3-188
and ct_wakeup 3-229
detailed description of 2-141

and layered asynchronous
applications 2-5

CS_EED_CMD operation 3-116
CS_EED_CMD property 2-132, 3-71

detailed description of 2-141
CS_ENCRYPT_CB callback type 3-22
CS_END_DATA return 3-141, 3-149
CS_END_ITEM return 3-149
CS_ENDPOINT property 2-132, 3-71
CS_EXEC_IMMEDIATE dynamic SQL

operation 3-123
CS_EXECUTE dynamic SQL

operation 3-123
CS_EXPOSE_FMTS property 2-132, 3-71,

3-79
detailed description of 2-142
must be enabled to receive format

results 3-207
CS_EXTRA_INF property 2-132, 3-72, 3-79

detailed description of 2-143
and in-line message handling 2-76,

2-77
CS_FAIL constant 2-16
CS_FIRST_CHUNK symbol 2-47, 2-58

and sequenced messages 2-78
CS_FLOAT datatype 2-198
CS_FMT_NULLTERM symbol 2-51
CS_FMT_PADBLANK symbol 2-51
CS_FMT_PADNULL symbol 2-51
CS_FMT_UNUSED symbol 2-51
CS_FORCE_CLOSE option 3-39

when to use 3-41
CS_FORCE_EXIT option 3-137
CS_GET action 3-47, 3-77
CS_GET operation 3-116
CS_GETATTR descriptor area

operation 3-127
CS_GETCNT descriptor area

operation 3-127
CS_HASEED symbol 2-58
CS_HIDDEN bit 2-9, 2-52, 3-111
CS_HIDDEN_KEYS property 2-132, 3-49,

3-72, 3-80
and browse mode 2-9

Client-Library/C Reference Manual 11

Open Client Release 10.0

and ct_keydata 3-164
detailed description of 2-143
when not settable 2-144

CS_HOSTNAME property 2-132, 3-72
detailed description of 2-144

CS_IDENTITY bit 2-52, 3-111
CS_IFILE property 2-133, 3-80

detailed description of 2-145
CS_IMAGE datatype 2-200
CS_INIT operation 3-115
CS_INPUTVALUE bit 2-53
CS_INT datatype 2-198
CS_INTERRUPT return 3-187
CS_IODESC structure 2-54, 2-186, 3-101

and ct_send_data 3-217
CS_ISBROWSE information type 3-18
CS_KEY bit 2-52, 3-111
CS_LANG_CMD command type 3-53
CS_LAST_CHUNK symbol 2-48, 2-58

and sequenced messages 2-78
CS_LAYER macro 2-35, 2-115
CS_LOC_PROP property 2-133, 3-72

detailed description of 2-144
CS_LOCALE structure 2-185

when to use 2-84
CS_LOGIN_STATUS property 2-133, 3-72

detailed description of 2-145
CS_LOGIN_TIMEOUT property 2-133, 3-80

detailed description of 2-145
CS_LOGINFO structure 2-185

cannot be re-used 3-224
CS_LONGBINARY datatype 2-195
CS_LONGCHAR datatype 2-196
CS_MAX_CONNECT property 2-133, 3-80,

3-85
default value 2-146
detailed description of 2-146

CS_MAX_MSG constant 2-77
CS_MAX_PREC constant 2-52
CS_MAX_SCALE constant 2-51
CS_MEM_ERROR return 3-158
CS_MEM_POOL property 2-133, 3-80

detailed description of 2-146
CS_MESSAGE_CB callback type 3-22

CS_MIN_PREC constant 2-52
CS_MIN_SCALE constant 2-51
CS_MONEY datatype 2-199
CS_MONEY4 datatype 2-199
CS_MSG_CMD command type 3-53
CS_MSG_GETLABELS constant 2-25
CS_MSG_LABELS constant 2-25
CS_MSG_RESULT result type 3-203
CS_MSGLIMIT operation 3-115
CS_MSGTYPE information type 3-196
CS_NETIO property 2-134, 3-72, 3-80,

3-85
detailed description of 2-147
restrictions 2-148

CS_NO_LIMIT message limit 3-120
CS_NO_LIMIT timeout value 2-145
CS_NO_TRUNCATE property 2-134, 3-80

and sequenced messages 2-77
detailed description of 2-148

CS_NOINTERRUPT property 2-134, 3-80
detailed description of 2-149

CS_NORECOMPILE command option 3-52
CS_NOTIF_CB callback type 3-22
CS_NOTIF_CMD property 2-134, 3-72

detailed description of 2-149
CS_NULLTERM constant 2-50
CS_NUM_COMPUTES information

type 3-196
CS_NUMBER macro 2-35, 2-115
CS_NUMDATA information type 3-196
CS_NUMERIC datatype 2-198
CS_NUMORDERCOLS information

type 3-196
CS_OP_AVG aggregate operator

type 3-61
CS_OP_COUNT aggregate operator

type 3-61
CS_OP_MAX aggregate operator

type 3-61
CS_OP_MIN aggregate operator

type 3-61
CS_OP_SUM aggregate operator

type 3-61
CS_OPT_ANSINULL option 2-117, 3-170

12 Index

Open Client Release 10.0

CS_OPT_ANSIPERM option 2-117, 3-170
CS_OPT_ARITHABORT option 2-118,

3-170
CS_OPT_ARITHIGNORE option 2-118,

3-170
CS_OPT_AUTHOFF option 2-118, 3-170
CS_OPT_AUTHON option 2-118, 3-170
CS_OPT_CHAINXACTS option 2-119,

3-170
CS_OPT_CURCLOSEONXACT

option 2-119, 3-170
CS_OPT_CURREAD option 2-119, 3-170
CS_OPT_CURWRITE option 2-119, 3-171
CS_OPT_DATEFIRST option 2-119, 3-171
CS_OPT_DATEFORMAT option 2-119,

3-171
CS_OPT_FIPSFLAG option 2-119, 3-171
CS_OPT_FORCEPLAN option 2-119, 3-171
CS_OPT_FORMATONLY option 2-119,

3-171
CS_OPT_GETDATA option 2-114, 2-120,

3-171
CS_OPT_IDENTITYOFF option 2-120,

3-171
CS_OPT_IDENTITYON option 2-120, 3-171
CS_OPT_ISOLATION option 2-120, 3-171
CS_OPT_NOCOUNT option 2-120, 3-171
CS_OPT_NOEXEC option 2-120, 3-171
CS_OPT_PARSEONLY option 2-121, 3-171
CS_OPT_QUOTED_IDENT option 2-121,

3-171
CS_OPT_RESTREES option 2-121, 3-171
CS_OPT_ROWCOUNT option 2-121, 3-171
CS_OPT_SHOWPLAN option 2-121, 3-172
CS_OPT_STATS_IO option 2-121, 3-172
CS_OPT_STATS_TIME option 2-122, 3-172
CS_OPT_STR_RTRUNC option 2-122, 3-172
CS_OPT_TEXTSIZE option 2-122, 3-172
CS_OPT_TRUNCIGNORE option 2-122,

3-172
CS_OPTION_GET capability 3-33
CS_ORDERBY_COLS information

type 3-196
CS_ORIGIN macro 2-35, 2-115

CS_PACKAGE_CMD command type 3-53
CS_PACKETSIZE property 2-134, 3-72

detailed description of 2-149
CS_PARAM_RESULT result type 2-10,

3-143, 3-203
processing 2-162

CS_PARENT_HANDLE property 2-134,
3-49, 3-73

detailed description of 2-149
CS_PASSTHRU_EOM return 3-190, 3-222
CS_PASSTHRU_MORE return 3-190, 3-222
CS_PASSWORD property 2-134, 3-73

detailed description of 2-149
CS_PENDING return 2-3, 2-19, 3-142,

3-149
CS_PREPARE dynamic SQL

operation 3-123
CS_PROTO_BULK capability 3-33
CS_PROTO_DYNAMIC capability 3-33
CS_PROTO_DYNPROC capability 3-34
CS_QUIET return 3-187
CS_REAL datatype 2-198
CS_RECOMPILE command option 3-52
CS_REQ_BCP capability 3-34
CS_REQ_CURSOR capability 3-34
CS_REQ_DYN capability 3-34
CS_REQ_LANG capability 3-34
CS_REQ_MSG capability 3-34
CS_REQ_MSTMT capability 3-34
CS_REQ_NOTIF capability 3-34
CS_REQ_PARAM capability 3-34
CS_REQ_RPC capability 3-34
CS_REQ_URGNOTIF capability 3-34
CS_RES_NOEED capability 3-35
CS_RES_NOMSG capability 3-35
CS_RES_NOPARAM capability 3-35
CS_RES_NOSTRIPBLANKS capability 3-35
CS_RES_NOTDSDEBUG capability 3-35
CS_RETURN bit 2-53
CS_ROW_COUNT information type 3-196
CS_ROW_FAIL return 3-141
CS_ROW_RESULT result type 3-143, 3-203
CS_ROWFMT_RESULT result type 2-142,

3-203

Client-Library/C Reference Manual 13

Open Client Release 10.0

CS_RPC_CMD command type 3-52, 3-53
CS_SEC_APPDEFINED property 2-135,

3-73
detailed description of 2-150

CS_SEC_CHALLENGE property 2-135,
3-73

detailed description of 2-150
CS_SEC_ENCRYPTION property 2-135,

3-73
detailed description of 2-150

CS_SEC_NEGOTIATE property 2-135, 3-73
and trusted-user security

handshakes 3-167
detailed description of 2-150

CS_SEND_BULK_CMD command
type 3-52, 3-53

CS_SEND_DATA_CMD command
type 3-52, 3-53

CS_SENSITIVITY_TYPE datatype 2-178,
2-200

CS_SERVERMSG structure 2-56, 2-186
CS_SERVERMSG_CB callback type 3-22
CS_SERVERMSG_TYPE structure

type 3-114
CS_SERVERNAME property 2-135, 3-73
CS_SET action 3-47, 3-77
CS_SET_CAPMASK macro 2-34, 2-115, 3-38
CS_SET_DBG_FILE debug operation 3-106
CS_SET_FLAG debug operation 3-106
CS_SET_PROTOCOL_FILE debug

operation 3-106
CS_SETATTR descriptor area

operation 3-128
CS_SETCNT descriptor area

operation 3-128
CS_SEVERITY macro 2-35, 2-115
CS_SIGNAL_CB callback type 2-31, 3-22
CS_SIZEOF macro 2-116
CS_SMALLINT datatype 2-198
CS_SRC_VALUE constant 2-51, 2-52
CS_STATUS operation 3-116
CS_STATUS_RESULT result type 3-143,

3-203
processing 2-163

CS_SV_API_FAIL message severity 2-36,
2-46

CS_SV_COMM_FAIL message
severity 2-37, 2-46

CS_SV_CONFIG_FAIL message
severity 2-36, 2-46

CS_SV_FATAL message severity 2-37, 2-46
CS_SV_INFORM message severity 2-36,

2-46
CS_SV_INTERNAL_FAIL message

severity 2-37, 2-46
CS_SV_RESOURCE_FAIL message

severity 2-36, 2-46
CS_SV_RETRY_FAIL message

severity 2-36, 2-46
CS_TABNAME information type 3-18
CS_TABNUM information type 3-18
CS_TDS_VERSION property 2-135, 3-73

and capabilities 3-37
detailed description of 2-151

CS_TEXT datatype 2-200
CS_TEXTLIMIT property 2-135, 3-73, 3-80

default value 2-152
detailed description of 2-152

CS_TIMED_OUT return 3-187
CS_TIMEOUT property 2-135, 3-80

detailed description of 2-152
CS_TIMESTAMP bit 2-9, 2-53, 3-111
CS_TINYINT datatype 2-198
CS_TRAN_COMPLETED transaction

state 2-81
CS_TRAN_FAIL transaction state 2-81
CS_TRAN_IN_PROGRESS transaction

state 2-81
CS_TRAN_STMT_FAIL transaction

state 2-81
CS_TRAN_UNDEFINED transaction

state 2-81
CS_TRANS_STATE information type 3-196
CS_TRANSACTION_NAME

property 2-135, 3-73
detailed description of 2-152

CS_TST_CAPMASK macro 2-34, 2-116, 3-38
CS_UNUSED command option 3-52

14 Index

Open Client Release 10.0

CS_UNUSED option 3-137
CS_UPDATABLE bit 2-52, 3-111
CS_UPDATECOL bit 2-53
CS_USE_DESC descriptor area

operation 3-128
CS_USER_ALLOC property 2-136, 3-81

detailed description of 2-153
CS_USER_FREE property 2-136, 3-81

detailed description of 2-154
CS_USER_MAX_MSGID constant 2-25
CS_USER_MSGID constant 2-25
CS_USERDATA property 2-136, 3-50, 3-74

detailed description of 2-154
using with callbacks 3-24

CS_USERNAME property 2-136, 3-74
detailed description of 2-156

CS_VARBINARY datatype 2-195
CS_VARCHAR datatype 2-196
CS_VER_STRING property 2-136, 2-156,

3-81
detailed description of 2-156

CS_VERSION property 2-136, 2-156, 3-81
detailed description of 2-156
determining its value 3-160
legal value 2-156

CS_VERSION_100 version 3-158
CS_VERSION_KEY bit 2-52, 3-111
csconfig.h header file 2-83
CS-Library

definition of 1-6, A-3
cspublic.h header file 2-83, 2-116
csr_disp.c sample program 2-172
cstypes.h header file 2-35, 2-83, 2-115,

2-116
ct_bind 3-7 to 3-15

code example 3-13
common reasons for failure 3-11
and CS_DATAFMT structure 3-8

ct_br_column 3-16 to 3-17
when to call 2-9

ct_br_table 3-18 to 3-20
when to call 2-9

ct_callback 3-21 to 3-25
code example 3-24

and layered applications 2-6
ct_cancel 3-26 to 3-30

asynchronous behavior 2-3
callable when asynchronous

operation pending 2-4
code example 3-30

CT_CANCEL completion id 3-186, 3-228
ct_capability 2-180, 3-31 to 3-38
ct_close 3-39 to 3-42

asynchronous behavior 2-3
code example 3-42
common reason for failure 3-40

CT_CLOSE completion id 3-186, 3-228
ct_cmd_alloc 3-43 to 3-44

code example 3-44
reason for failure 3-43

ct_cmd_drop 3-45 to 3-46
code example 3-46
reasons for failure 3-45

ct_cmd_props 3-47 to 3-50
callable when asynchronous

operation pending 2-4
code example 3-50
when to use 3-48

ct_command 2-41, 3-51 to 3-57
code example 3-57
and language cursors 2-59

ct_compute_info 3-58 to 3-62
code examples 3-61
when to call 3-60

ct_con_alloc 3-63 to 3-65
code example 3-64
common reason for failure 3-63
what to do before calling it 3-63
when to use 3-44

ct_con_drop 3-66 to 3-67
code example 3-67
common reason for failure 3-66
and dead connections 3-67
what to do before calling it 3-66

ct_con_props 3-68 to 3-76
callable when asynchronous

operation pending 2-4
code example 3-74

Client-Library/C Reference Manual 15

Open Client Release 10.0

ct_config 3-77 to 3-82
code example 3-82

ct_connect 3-83 to 3-88
asynchronous behavior 2-3
code example 3-87
and CS_MAX_CONNECT property 3-85
and CS_NETIO property 3-85
reasons for failure 3-84
what to do before calling it 3-84

CT_CONNECT completion id 3-186, 3-228
ct_cursor 2-41, 3-89 to 3-99

and Client-Library cursors 2-61
code example 3-96

ct_data_info 3-100 to 3-103
code example 3-102
what to do before calling it 3-101

ct_debug 3-104 to 3-108
code example 3-107
default behavior 3-107

ct_describe 3-109 to 3-113
code example 3-112
and CS_DATAFMT structure 3-110
when not to call 3-110, 3-112
when to use 3-112

ct_diag 3-114 to 3-121
connection-specific in-line message

handling 3-117
de-installs message callbacks 2-16
extended error data 3-120
not for use at the context level 2-76,

3-118
reasons for failure 3-117
sequenced messages 2-79, 3-121

ct_dynamic 2-41, 3-122 to 3-126
ct_dyndesc 3-127 to 3-136
ct_exit 3-137 to 3-139

code example 3-138
reason for failure 3-138
when to use 3-138

ct_fetch 3-140 to 3-147
asynchronous behavior 2-4
asynchronous programming 3-143
code example 3-145
reason for failure 3-142

CT_FETCH completion id 3-186, 3-228
ct_get_data 3-148 to 3-153

alternative to ct_bind 3-11
asynchronous behavior 2-4
code example 3-151
data can be discarded 3-150
fetching text or image values 2-188
no conversion performed 3-150
when to use 3-150

CT_GET_DATA completion id 3-186,
3-228

ct_getformat 3-154 to 3-155
when to use 3-155

ct_getloginfo 3-156 to 3-157
when not to use 3-157
when to use 3-156

ct_init 3-158 to 3-161
calling multiple times 3-159
code example 3-160
what to do before calling it 3-159
when to call it 3-159

ct_keydata 3-162 to 3-164
circumstances for calling it 3-164
identifying the current row to a

server 3-164
primary uses 3-163

ct_labels 3-165 to 3-167
CT_NOTIFICATION completion id 3-186
ct_options 3-168 to 3-173

asynchronous behavior 2-4
CT_OPTIONS completion id 3-186, 3-228
ct_param 3-174 to 3-184

code example 3-180
when to use 3-176

ct_poll 3-185 to 3-189
callable when asynchronous

operation pending 2-4
callbacks 3-188
code example 3-188
and CS_ASYNC_NOTIFS property 3-188
and CS_DISABLE_POLL property 3-188
and layered applications 2-6
preventing report of routine

completions 2-5

16 Index

Open Client Release 10.0

using to check for asynchronous
completions 2-3

when to use 3-187
ct_recvpassthru 3-190 to 3-191

asynchronous behavior 2-4
CT_RECVPASSTHRU completion id 3-186,

3-228
ct_remote_pwd 3-192 to 3-194

defining multiple passwords 3-194
when not to use 3-194

ct_res_info 3-195 to 3-201
code example 3-201
when to use 3-197

ct_results 3-202 to 3-211
asynchronous behavior 2-4
code example 3-208
processing results in a loop 3-205
and stored procedures 3-207
when to use 3-204

CT_RESULTS completion id 3-186, 3-228
ct_send 3-212 to 3-215

asynchronous behavior 2-4
code example 3-213
doesn’t wait for server response 3-213

CT_SEND completion id 3-186, 3-228
ct_send_data 3-216 to 3-221

asynchronous behavior 2-4
code example 3-218
when to use 3-217

CT_SEND_DATA completion id 3-186,
3-228

ct_sendpassthru 3-222 to 3-223
asynchronous behavior 2-4

CT_SENDPASSTHRU completion id 3-186,
3-228

ct_setloginfo 3-224 to 3-226
frees the CS_LOGINFO structure 3-224
when not to use 3-225
when to use 3-224

CT_USER_FUNC completion id 3-186,
3-228

ct_wakeup 3-227 to 3-229
code example 3-229

and layered asynchronous
applications 2-5

and CS_DISABLE_POLL property 3-229
ctpublic.h header file 1-6, 2-83
Current row

definition of A-3
Cursor

updating 3-96
Cursor command types

CS_CURSOR_CLOSE 3-90
CS_CURSOR_DEALLOC 3-90
CS_CURSOR_DECLARE 3-90
CS_CURSOR_DELETE 3-90
CS_CURSOR_OPEN 3-90
CS_CURSOR_OPTION 3-90
CS_CURSOR_ROWS 3-90
CS_CURSOR_UPDATE 3-91

Cursor ID property 2-139
Cursor name property 2-139
Cursor result sets

fetching 2-62
simultaneous fetching from 2-62

Cursor row results 2-165
fetching 3-144
processing 3-204

Cursor rowcount property 2-140
Cursor status

guaranteed accuracy 2-141
Cursor status property 2-140
Cursors 2-59 to 2-62

ANSI restriction 2-64
batching Client-Library cursor

commands 3-92
Client-Library cursor 2-59
Client-Library cursor close

command 3-92
Client-Library cursor de-allocate

command 3-93
Client-Library cursor declare

command 3-93
Client-Library cursor delete

command 3-94
Client-Library cursor open

command 3-94

Client-Library/C Reference Manual 17

Open Client Release 10.0

Client-Library cursor rows
command 3-95, 3-96

Client-Library cursor update
command 3-96

Client-Library cursors and cursor
result sets 2-61

Client-Library cursors and data
modification 2-62

Client-Library cursors’ use of
command structures 2-61

and ct_command 2-59
and ct_cursor 2-61
cursor rows setting 2-60, 2-62, 3-96
declaring a Client-Library cursor on a

prepared statement 2-71
declaring a cursor 2-40
declaring Client-Library cursors 2-61
declaring language cursors 2-59
defining host variable formats 3-176
definition of A-3
description of 2-59
for update Client-Library cursors 3-94
identifying update columns 3-176
initiating a Client-Library cursor

command 3-89
interaction between language cursors

and Client-Library cursors 2-62
language cursor 2-59
language cursors and data

modification 2-61
language cursors and regular row

result sets 2-60
language cursors’ use of command

structures 2-59
options 3-95
passing input parameter values 3-95,

3-176
read-only Client-Library cursors 3-93
repositioning a cursor row 3-164
sending a Client-Library cursor

command to a server 3-91
update columns 3-94

D
Data

defining user-allocated data 2-154
reading data from a server via

ct_get_data 3-148
Data format structure 2-49
Data structure validation 3-107
Data Workbench User’s Guide xxiii
Database

definition of A-3
Datatypes

binary 2-195
CS_BINARY 2-195
CS_LONGBINARY 2-195
CS_VARBINARY 2-195

bit 2-196
CS_BIT 2-196

character 2-196
CS_CHAR 2-196
CS_LONGCHAR 2-196
CS_VARCHAR 2-196

CS_BOUNDARY_TYPE 2-178
and cs_calc 2-194
and cs_cmp 2-194
and cs_convert 2-194
and cs_dt_crack 2-194
and cs_dt_info 2-195
CS_SENSITIVITY_TYPE 2-178
and cs_strcmp 2-195
datetime 2-197

CS_DATETIME 2-197
CS_DATETIME4 2-197

decimal
CS_DECIMAL 2-198

definition of A-3
float

CS_FLOAT 2-198
integer 2-198

CS_INT 2-198
CS_SMALLINT 2-198
CS_TINYINT 2-198

list of 2-193
money 2-199

CS_MONEY 2-199

18 Index

Open Client Release 10.0

CS_MONEY4 2-199
numeric

CS_NUMERIC 2-198
real

CS_REAL 2-198
routines that manipulate

datatypes 2-194
security 2-178, 2-200

CS_BOUNDARY_TYPE 2-200
CS_SENSITIVITY_TYPE 2-200

structure for describing 2-49
text and image 2-200

CS_IMAGE 2-200
CS_TEXT 2-200

user-defined types 2-200
Datetime datatypes 2-197
DB-Library

definition of 1-5, A-3
Deadlock

definition of A-3
Debug

managing debug library
operations 3-104

Debug flags
CS_DBG_ALL 3-105
CS_DBG_API_STATES 3-105
CS_DBG_ASYNC 3-105
CS_DBG_DIAG 3-105
CS_DBG_ERROR 3-105
CS_DBG_MEM 3-105
CS_DBG_NETWORK 3-105
CS_DBG_PROTOCOL 3-105
CS_DBG_PROTOCOL_STATES 3-105

Debug operations
CS_CLEAR_FLAG 3-106
CS_SET_DBG_FILE 3-106
CS_SET_FLAG 3-106
CS_SET_PROTOCOL_FILE 3-106

Debugging
affect on asynchronous

programs 3-107
assertion checking 3-107
data structure validation 3-107
impact on performance 3-107

memory reference checking 3-107
specifying debug files 3-107

Decimal datatype 2-198
Declaring a cursor 2-40
Decoding a message number 2-115
Default

definition of A-4
Default database

definition of A-4
Default language

definition of A-4
De-installing

callback routines 2-14
Deleting

key columns 3-163
Describe results 2-166, 3-207
Describing prepared statement

output 2-42
Descriptor area

allocating 3-129
associating with a statement or

command structure 3-135
de-allocating 3-130
definition of 3-129, A-4
name must be unique within a

context 3-129
operations

CS_ALLOC 3-127
CS_DEALLOC 3-127
CS_GETATTR 3-127
CS_GETCNT 3-127
CS_SETATTR 3-128
CS_SETCNT 3-128
CS_USE_DESC 3-128

performing operations on 3-127
retrieving a parameter or result item’s

attributes 3-130
retrieving the number of parameters

or columns 3-133
scope is a Client-Library

context 3-129
setting a parameter’s attributes 3-133
setting the number of parameters or

columns 3-135

Client-Library/C Reference Manual 19

Open Client Release 10.0

use of command structures within a
context 3-129

Descriptor structure
defining and retrieving 3-100

Diagnostic subsystems
enabling and disabling 3-106

Discarding results 3-28
danger of discarding results 3-29

Documents
related xxii

Dynamic SQL 2-63 to 2-73
advantages 2-63
alternative to 2-73
de-allocating a prepared

statement 2-72
declaring a cursor on a prepared

statement 2-71
definition of A-4
executing a prepared statement 2-70
getting a description of input

parameters 2-68
getting a description of prepared

statement output 2-69
how SQL Server implements it 2-64
initiating a prepared dynamic SQL

statement command 3-122
limitations 2-63

ANSI cursor restriction 2-64
performance 2-64
SQL Server restrictions 2-64

operations
CS_CURSOR_DECLARE 3-123
CS_DEALLOC 3-123
CS_DESCRIBE_INPUT 3-123
CS_DESCRIBE_OUTPUT 3-123
CS_EXEC_IMMEDIATE 3-123
CS_EXECUTE 3-123
CS_PREPARE 3-123

performing operations on a descriptor
area 3-127

preparing a statement 2-67
processing descriptive

information 3-204
purpose 2-63

restrictions 2-63
sending a command to a server 3-124
stored procedures as alternatives 2-73

E
Embedded SQL

comparing to Client-Library 1-6
Encrypted password security

handshakes 2-150, 2-177
Encrypted passwords 2-22
Encryption callback 2-22

defining 2-23
how triggered 2-12
installing 3-22
valid return values 2-23
when called 2-12

Error and message handling 2-74 to 2-82
and CS_CLIENTMSG structure 2-45
and CS_SERVERMSG structure 2-56
discussion of callbacks versus in-line

method 2-74
extended error data 2-81
handling Client-Library errors with a

client message callback 2-16
handling server errors with a server

message callback 2-28
message structures 2-76
on different connections 2-75
operating system messages 2-78
preventing message truncation 2-77

with CS_NO_TRUNCATE
property 2-148

See In-line message handling 3-114
sequenced messages 2-77
server message information can be

discarded 2-28
switching between callback and

in-line methods 2-75
using callbacks to handle

messages 2-75
using ct_diag to handle messages

in-line 2-76

20 Index

Open Client Release 10.0

when Client-Library can’t call the
client message callback 2-76

when Client-Library discards
message information 2-75

Error message
definition of A-4

Event handler
definition of A-4

Events
callback

See Callback events
definition of A-4

ex_alib.c sample program 2-172
ex_amain.c sample program 2-172
Example programs xxii

Chapter1 example 1-9
example.h header file 2-172
exasync.h header file 2-172
Execute immediate operation 2-65

criteria 2-65
steps to perform 2-66

Execute operation 2-65
Executing

executing a SQL Server stored
procedure 2-40

executing a statement
with no variables 2-39
with variables 2-39

Exiting
Client-Library 3-137

Expose formats property 2-142
Exposed structures 2-186

CS_BROWSEDESC structure 2-186
CS_CLIENTMSG structure 2-186
CS_DATAFMT structure 2-186
CS_IODESC structure 2-186
CS_SERVERMSG structure 2-186
definition of A-5
SQLCA structure 2-186
SQLCODE structure 2-186
SQLSTATE structure 2-187

Exposing hidden keys 2-143
Extended error data 2-79

benefits of 2-79

how to tell if available 2-80
in-line error handling 2-81
sequenced messages 2-79
and server message callbacks 2-80

Extended error data property 2-141
Extended transaction

definition of A-5
Extra information property 2-143
Extracting the contents of a key

column 3-162
exutils.c sample program 2-172
exutils.h header file 2-172

F
Features

list of advanced features 1-18
Fetching

compute rows 3-145
cursor rows 3-144
regular rows 3-144
result data 3-140
return parameters 3-144
return status 3-144

FIPS
definition of A-5

Float datatype 2-198
Format information

precedes actual data 3-207
processing 3-204
retrieving 3-109

Format result set
description of 2-142

Format results 2-166
CS_EXPOSE_FMTS must be

enabled 3-207
returning a column’s user-defined

format string 3-154
Formats

defining host variable formats 3-177
describing data formats 2-49
expose formats property 2-142
using national formats for datetime,

money, and numeric values 2-84

Client-Library/C Reference Manual 21

Open Client Release 10.0

G
Gateway

definition of A-5
Gateway applications

and cursor information 2-141
handling encrypted passwords 2-22,

2-177
positioned updates and

ct_keydata 3-164
repackaging SQL Server results 2-143
retrieving format information 3-207
returning a column’s user-defined

format string 3-155
and TDS pass-through 3-157, 3-191,

3-223
getsend.c sample program 2-172
Global properties

retrieving 3-77
setting 3-77

H
Handshakes

challenge/response security 2-24,
2-176

application-defined 2-150
Sybase-defined 2-150

encrypted password security 2-22,
2-150, 2-177

trusted-user security 2-24, 2-150,
2-175

types of security handshakes 2-175
Header files 2-83

csconfig.h 2-83
cspublic.h 2-83, 2-116
cstypes.h 2-35, 2-83, 2-115, 2-116
ctpublic.h 1-6, 2-83
example.h 2-172
exasync.h 2-172
exutils.h 2-172
sqlca.h 2-83

Help xxiv
Technical Support xxiv

Hidden keys

and ct_describe 2-143
and ct_res_info 2-143
definition of 2-143

Hidden keys property 2-143
Hidden structures

CS_BLKDESC structure 2-185
CS_CAP_TYPE structure 2-185
CS_COMMAND structure 2-185
CS_CONNECTION structure 2-185
CS_CONTEXT structure 2-185
CS_LOCALE structure 2-185
CS_LOGINFO structure 2-185
definition of A-5
list of 2-185
related routines 2-185

Host language
definition of A-5

Host name property 2-144
Host program

definition of A-5
Host variable

defining formats 3-177
definition of A-5

I
I/O descriptor structure 2-54

and ct_data_info 3-101
and ct_send_data 3-101
defining and retrieving 3-100
how to use 3-101

i18n.c sample program 2-172
Indicator variable

definition of A-5
Information types

CS_BROWSE_INFO 3-196
CS_CMD_NUMBER 3-196
CS_ISBROWSE 3-18
CS_MSGTYPE 3-196
CS_NUM_COMPUTES 3-196
CS_NUMDATA 3-196
CS_NUMORDERCOLS 3-196
CS_ORDERBY_COLS 3-196
CS_ROW_COUNT 3-196

22 Index

Open Client Release 10.0

CS_TABNAME 3-18
CS_TABNUM 3-18
CS_TRANS_STATE 3-196

Initializing Client-Library 3-158
Initiating a prepared dynamic SQL

statement command 3-122
In-line message handling

advantages over callback
routines 2-75

clearing a connection’s
messages 3-119

Client-Library timeout errors 2-141
and CS_EXTRA_INF property 3-118
and ct_diag 3-114
ct_diag can discard unread

messages 3-118
extended error data 2-81, 3-120
initializing 3-118
limiting messages 3-119

CS_NO_LIMIT 3-120
managing 3-114
operations

CS_CLEAR 3-115
CS_EED_CMD 3-116
CS_GET 3-116
CS_INIT 3-115
CS_MSGLIMIT 3-115
CS_STATUS 3-116

retrieving a pointer to the
CS_COMMAND structure 3-120

retrieving messages 3-119
retrieving the number of

messages 3-120
sequenced messages 3-121

Input parameter values
passing 3-178

Input variable
definition of A-6

Integer datatypes 2-198
Interfaces file

and ct_connect 2-145, 3-83
definition of A-6
detailed description of 2-145
interfaces file property 2-145

International support 2-84 to 2-88
default behavior 2-87

Interrupt level
memory requirements 2-4
when callbacks are called at 2-11

Interrupts
examples of interrupt situations 2-149
preventing with CS_NOINTERRUPT

property 2-149
isql script file

definition of A-6
Item numbers

and ct_res_info 2-124
as parameters 2-124

K
Key

definition of A-6
Key columns

ct_fetch deletes values previously
specified 3-164

exposing hidden keys 2-143
extracting the contents of 3-162
setting a column’s value to

NULL 3-164
specifying 3-162
when updating, all key columns must

be updated 3-164
Keyword

definition of A-6

L
Labels

boundary 2-178
sensitivity 2-178

Language commands
and host variables 3-55
initiating 3-54

Language cursors
See Also Cursors
when regular row result sets are

generated 3-55

Client-Library/C Reference Manual 23

Open Client Release 10.0

Languages
setting national 2-84

Layered applications
asynchronous programming 2-5

and ct_callback 2-6
and ct_poll 2-6
and ct_wakeup 2-5
example 2-6
preventing report of routine

completions 2-5, 2-141
Listing file

definition of A-6
Literal statements

executing a dynamic SQL literal
statement 3-126

Locale
definition of A-6

Locale information 2-84
Locale information property 2-144
Locale name

definition of A-7
predefined 2-88

Locale structure
definition of A-7

Locales file
definition of A-6
entries 2-87
predefined locale names 2-88
what it does 2-87

Localization
at the connection level 2-86
at the context level 2-85
and cs_config 2-144
and cs_locale 2-88
CS_LOCALE structure 2-84
and ct_con_props 2-144
at the data element level 2-86
default values 2-84
definition of A-7
inheriting values from the parent

context 2-86
setting custom values 2-84
where does Client-Library look for

values? 2-87

Logging into a server 3-83
Login name

defining 2-156
definition of A-7

Login properties 2-128
copying to new connection 2-129,

3-157, 3-225
Login response information

transferring 3-156, 3-224
Login status property 2-145
Login timeout property 2-145

M
Macros

CS_CLR_CAPMASK 2-34
CS_LAYER 2-35
CS_NUMBER 2-35
CS_ORIGIN 2-35
CS_SET_CAPMASK 2-34
CS_SEVERITY 2-35
CS_TST_CAPMASK 2-34
definition of 2-115
Open Client macros 2-115

Main-line application
sharing information with callback

routine 2-154
Main-line code

retrieving transaction states 2-82
malloc

not safe at interrupt level 2-4
Maximum number of connections

property 2-146
Memory allocation

installing custom memory allocation
routines 2-5

Memory allocation property 2-153
Memory free property 2-154
Memory pool

clearing with ct_config 2-147
replacing with ct_config 2-147

Memory pool property 2-146
Memory reference checking 3-107
Memory requirements

24 Index

Open Client Release 10.0

for asynchronous programming 2-4
how Client-Library satisfies 2-5
on UNIX systems 2-146

Message callback
installing 3-22

Message commands 2-114
initiating 3-55
purpose 3-55
sending 2-114

Message ID
retrieving a message ID 3-199
valid range for user-defined

messages 3-55
Message number

decoding 2-115
definition of A-7

Message parameters 2-165
fetching 3-144

Message queue
definition of A-7

Message results 2-114, 2-166, 3-207
processing 3-204

Message severities
CS_SV_API_FAIL 2-36, 2-46
CS_SV_COMM_FAIL 2-37, 2-46
CS_SV_CONFIG_FAIL 2-36, 2-46
CS_SV_FATAL 2-37, 2-46
CS_SV_INFORM 2-36, 2-46
CS_SV_INTERNAL_FAIL 2-37, 2-46
CS_SV_RESOURCE_FAIL 2-36, 2-46
CS_SV_RETRY_FAIL 2-36, 2-46

Messages
chunked 2-77
legal IDs for user-defined

messages 2-114
See Also Error and message handling
sequenced 2-77

Money datatypes 2-199
Multi-byte character set

definition of A-7
Multi-user updates

regulating in browse mode 2-9
Mutex

definition of A-7

N
National language support 2-84
Negotiated properties 2-128
Negotiation callback 2-24

challenge/response security
handshakes 2-24

defining 2-24
how triggered 2-12
installing 3-22
trusted-user security

handshakes 2-24
valid return values 2-26
when called 2-12

Net-Library 1-4
Network I/O property 2-147

restrictions 2-148
No interrupt property 2-149
Notification callback 2-27

Client-Library routines it can call 2-28
defining 2-27
how triggered 2-13
installing 3-22
valid return value 2-27
when called 2-13

Notification callback event
when it occurs 2-11

Notification parameter property 2-149
Null

definition of A-7
NULL parameters 2-123
Numeric datatype 2-198

O
On-line help xxiv
Open Client

application developer
responsibilities 2-179

description of product 1-4
generic programming interface 2-179
independent of server behavior 2-179
libraries included in 1-5
library calls diagrammed 1-5
macros 2-115

Client-Library/C Reference Manual 25

Open Client Release 10.0

network services 1-4
programming interfaces 1-4
servers it accesses 2-179

Open Server
capabilities diagrammed 1-3
challenge/response

handshaking 2-150
definition of A-8
description of 1-4
differences from SQL Server 1-2
library calls diagrammed 1-5
network services 1-4
programming interfaces 1-4
restrictions 2-179
similarities to SQL Server 1-2

Open Server application
definition of A-8

Operating system messages
not sequenced 2-78

Operating-system signals
handling with a signal callback 2-31

Operator
sizeof 2-116

Option
checking the status of server

options 3-172
Options

CS_OPT_ANSINULL 2-117
CS_OPT_ANSIPERM 2-117
CS_OPT_ARITHABORT 2-118
CS_OPT_ARITHIGNORE 2-118
CS_OPT_AUTHOFF 2-118
CS_OPT_AUTHON 2-118
CS_OPT_CHAINXACTS 2-119
CS_OPT_CURCLOSEONXACT 2-119
CS_OPT_CURREAD 2-119
CS_OPT_CURWRITE 2-119
CS_OPT_DATEFIRST 2-119
CS_OPT_DATEFORMAT 2-119
CS_OPT_FIPSFLAG 2-119
CS_OPT_FORCEPLAN 2-119
CS_OPT_FORMATONLY 2-119
CS_OPT_GETDATA 2-114, 2-120
CS_OPT_IDENTITYOFF 2-120

CS_OPT_IDENTITYON 2-120
CS_OPT_ISOLATION 2-120
CS_OPT_NOCOUNT 2-120
CS_OPT_NOEXEC 2-120
CS_OPT_PARSEONLY 2-121
CS_OPT_QUOTED_IDENT 2-121
CS_OPT_RESTREES 2-121
CS_OPT_ROWCOUNT 2-121
CS_OPT_SHOWPLAN 2-121
CS_OPT_STATS_IO 2-121
CS_OPT_STATS_TIME 2-122
CS_OPT_STR_RTRUNC 2-122
CS_OPT_TEXTSIZE 2-122
CS_OPT_TRUNCIGNORE 2-122
server options set on a per-connection

basis 3-173
setting and retrieving server

options 3-168
SQL Server 2-117

outlen parameter 2-125
Output variable

definition of A-8

P
Package commands

initiating 3-55
purpose 3-55

Packets
default packet sizes vary by

platform 3-191
packet size property 2-149
receiving TDS packets 3-190

Parameter conventions 2-123 to 2-127
Parameter results 2-165

binding to program variables 3-7
Parameters

action parameter 2-125
buffer parameter 2-125
buflen parameter 2-125
conversion is server’s

responsibility 3-176
defining 3-174
definition of A-8

26 Index

Open Client Release 10.0

input parameter strings 2-123
interaction between action, buffer,

buflen, outlen parameters 2-126
item numbers as parameters 2-124
non-pointer parameters 2-123
NULL parameters 2-123
outlen parameter 2-125
output parameter strings 2-124
passing a non null-terminated

string 2-123
passing a null-terminated

string 2-123
passing an invalid structure

pointer 2-124
passing input parameter values 3-178
passing NULL values 3-176
pointer parameters 2-123
unused parameters 2-123

Pass-through mode
definition of A-8

Passwords
default password for remote

server 3-194
defining and clearing for remote

servers 3-192
password property 2-149
storing remote passwords 3-194

Pending results 3-206
Polling

connections 3-185
disabling 2-141

Prepare and execute operation
steps to perform 2-66

Prepare and execute operations 2-65
advantages 2-66
criteria 2-65

Prepare operation 2-65
Prepared statements

associated with unique
identifiers 3-124

command structures must belong to
same connection 3-124

de-allocating 2-72, 3-126
declaring a cursor on 2-71, 3-125

definition 2-42, 3-124
executing 3-126
executing a prepared statement 2-70
getting a description of input

parameters 2-68, 3-125
getting a description of output

from 2-69, 3-125
how to specify host variables in

Transact-SQL commands 3-124
initiating a dynamic SQL statement

command 3-122
passing parameters using

ct_dyndesc 3-124
passing parameters using

ct_param 3-124
preparing a statement 2-67, 3-125
setting readonly or for update 3-125
why prepare a statement? 2-42

Processing results 3-202
See Also Results

Program environment
setting up 1-15

Programming
asynchronous 2-3 to 2-7
See Also Asynchronous programming

Programs
sample 2-172

Properties 2-128 to 2-156
Client-Library-specific context

properties 3-79
command structure properties 3-47
connection structure properties 3-68
context structure properties 3-77
copying login properties 2-129
CS_ANSI_BINDS 2-130, 3-70, 3-79
CS_APPNAME 2-130, 3-70
CS_ASYNC_NOTIFS 2-130, 3-70
CS_BULK_LOGIN 2-130, 3-70
CS_CHARSETCNV 2-130, 3-70
CS_COMMBLOCK 2-130, 3-71
CS_CON_STATUS 2-131, 3-71
and cs_config 2-128
CS_CUR_ID 2-131, 3-49
CS_CUR_NAME 2-131, 3-49

Client-Library/C Reference Manual 27

Open Client Release 10.0

CS_CUR_ROW_COUNT 2-131
CS_CUR_ROWCOUNT 3-49
CS_CUR_STATUS 2-131, 3-49
CS_DIAG_TIMEOUT 2-131, 3-71
CS_DISABLE_POLL 2-132, 3-71, 3-79
CS_EED_CMD 2-132, 3-71
CS_ENDPOINT 2-132, 3-71
CS_EXPOSE_FMTS 2-132, 3-71, 3-79
CS_EXTRA_INF 2-132, 3-72, 3-79
CS_HIDDEN_KEYS 2-132, 3-49, 3-72,

3-80
CS_HOSTNAME 2-132, 3-72
CS_IFILE 2-133, 3-80
CS_LOC_PROP 2-133, 3-72
CS_LOGIN_STATUS 2-133, 3-72
CS_LOGIN_TIMEOUT 2-133, 3-80
CS_MAX_CONNECT 2-133, 3-80
CS_MEM_POOL 2-133, 3-80
CS_NETIO 2-134, 3-72, 3-80
CS_NO_TRUNCATE 2-134, 3-80
CS_NOINTERRUPT 2-134, 3-80
CS_NOTIF_CMD 2-134, 3-72
CS_PACKETSIZE 2-134, 3-72
CS_PARENT_HANDLE 2-134, 3-49, 3-73
CS_PASSWORD 2-134, 3-73
CS_SEC_APPDEFINED 2-135, 3-73
CS_SEC_CHALLENGE 2-135, 3-73
CS_SEC_ENCRYPTION 2-135, 3-73
CS_SEC_NEGOTIATE 2-135, 3-73
CS_SERVERNAME 2-135, 3-73
CS_TDS_VERSION 2-135, 3-73
CS_TEXTLIMIT 2-135, 3-73, 3-80
CS_TIMEOUT 2-135, 3-80
CS_TRANSACTION_NAME 2-135, 3-73
CS_USER_ALLOC 2-136, 3-81
CS_USER_FREE 2-136, 3-81
CS_USERDATA 2-136, 3-50, 3-74
CS_USERNAME 2-136, 3-74
CS_VER_STRING 2-136, 2-156, 3-81
CS_VERSION 2-136, 2-156, 3-81
CS-Library-specific context

properties 3-79
and ct_cmd_props 2-128
and ct_con_props 2-128

and ct_config 2-128
default values 2-128
definition of A-8
login properties 2-128
negotiated properties 2-128
Server-Library-specific context

properties 3-79
setting and retrieving

properties 2-128
Summary of Properties table 2-130
types of context properties 2-128, 3-78

Q
Query

definition of A-8

R
Read data from server 3-148
Real datatype 2-198
Registered procedures 2-157 to 2-159

advantages of 2-157
asynchronous notifications

property 2-137
and CS_ASYNC_NOTIFS property 2-159
definition of A-8
explanation of 2-157
handling notifications 2-27
installing a notification callback 3-22
notification callbacks 2-27
polling for notifications 3-185
processing notification

parameters 2-149
retrieving arguments 2-27
what happens when notification is

received 2-158
Regular row results 2-164

fetching 2-60, 3-144
processing 3-204
simultaneous fetching from multiple

result sets 2-60
Remote procedure calls 2-160 to 2-163

advantages 2-160

28 Index

Open Client Release 10.0

comparing RPCs and execute
statements 2-160

and ct_command 2-161
and ct_param 2-161
and ct_results 2-161
and ct_send 2-161
definition of A-8
initiating 3-56
processing results 3-56
purpose 3-56
related routines 2-161
results from 2-161
server-to-server

communication 3-193
Transact-SQL command

restriction 2-161
Remote procedures calls

and ct_remote_pwd 2-161
Request capabilities 3-31
Requests

determining supported request
types 2-33

Response capabilities 3-32
Responses

preventing server responses 2-33
Restrictions

Open Server 2-179
server 2-179
SQL Server 2-180

Result data
definition of 3-142, 3-204
getting a description of 3-109
retrieving the number of result data

items 3-199
Result item

three ways to retrieve its value 2-171
Result types

CS_CMD_DONE 3-202
CS_CMD_FAIL 3-202
CS_CMD_SUCCEED 3-202
CS_COMPUTE_RESULT 3-60, 3-203
CS_COMPUTEFMT_RESULT 3-203
CS_CURSOR_RESULT 3-203
CS_DESCRIBE_RESULT 3-203

CS_MSG_RESULT 3-203
CS_PARAM_RESULT 2-10, 3-203
CS_ROW_RESULT 3-203
CS_ROWFMT_RESULT 3-203
CS_STATUS_RESULT 3-203

Results 2-164 to 2-171
binding results to program

variables 3-7
canceling current results 3-207
canceling results 3-26, 3-207
code fragment demonstrating how to

process 2-167
completely processed 3-205
compute format results 3-207
compute row results 2-166
conversion error during

retrieval 3-144
CS_COMPUTE_RESULT 3-143
CS_CURSOR_RESULT 3-143
CS_PARAM_RESULT 3-143
CS_ROW_RESULT 3-143
CS_STATUS_RESULT 3-143
the ct_results loop 3-205
current result set information 3-195
cursor row results 2-165
definition of 2-164, 3-142
describe results 2-166, 3-207
discarding 3-28

dangers of discarding results 3-29
fetching 3-140
format results 2-166
list of result types 2-164
message results 2-166, 3-207
not generated by all commands 2-164
parameter results 2-165
pending results 3-206
processing 2-164, 3-202
processing with ct_fetch 3-143
regular row results 2-164
retrieving the command number for

the current result set 3-197
returning a column’s user-defined

format string 3-154
row format results 3-207

Client-Library/C Reference Manual 29

Open Client Release 10.0

row results 2-164
status results 2-165
types of 2-164, 3-143

Retrieving
capabilities 2-33
column ids of order-by columns 3-200
columns 3-148
command number for current result

set 3-197
command structure information 3-47
compute columns 3-148
compute result information 3-58
current result set or command

information 3-195
current server transaction state 3-201
description of result data 3-109
message id 3-199
number of columns in an order-by

clause 3-199
number of compute clauses 3-199
number of result data items 3-199
number of rows for current

command 3-200
return parameters 3-148
server options 3-168
transaction states

in a server message callback 2-82
in main-line code 2-82

user-defined formats of result
columns 3-154

Return parameters
fetching 3-144
processing 2-162, 3-204
retrieving descriptions of 3-109
retrieving return parameters 3-148
specifying a parameter as a return

parameter 2-162
Return status

binding to a program variable 3-7
fetching 3-144
retrieving a stored procedure return

status 3-149
Row format results 3-207
Row results 2-164

Rows
number of rows affected by most

recent command 2-143, 3-200
rpc.c sample program 2-172

S
Sample programs 2-172
Scrolling rows

browse mode method 2-8
Secure SQL Server

challenge/response security
handshakes 2-150, 2-176

handling challenges 2-24
handling security labels 2-24, 3-166
trusted-user security

handshakes 2-150, 2-175, 3-166
Security

bulk copies into Secure SQL
Server 2-178

datatypes 2-178, 2-200
features 2-175
handshakes 2-175

Security labels
defining and clearing 3-165
two methods of defining 2-150
unlimited number per

connection 3-167
select...for browse command 2-9
Select-list column id

retrieving for a compute column 3-59
Send-bulk-data commands

initiating 3-56
Send-data commands

initiating 3-56, 3-216
require a CS_IODESC structure 3-217

Sensitivity labels 2-178
Sequenced messages 2-77

and ct_diag 2-79
extended error data 2-79
message structure fields 2-78

Server
behavior 2-179
connecting to a server 3-63

30 Index

Open Client Release 10.0

definition of A-9
options

list of 2-117
setting and retrieving 3-168

restrictions 2-179
Server message callback 2-28

Client-Library routines it can call 2-29
defining 2-29
example 2-30
extended error data 2-80, 2-142
how triggered 2-13
installing 3-22
retrieving transaction states 2-82
valid return value 2-29
when called 2-13

Server messages 2-74
extended error data 2-79
mapping to SQLCODE structure 2-183

Server-Library
definition of A-9

Servers
backup

connecting to 3-85
closing a server connection 3-39
connecting to 3-83
defining and clearing

passwords 3-192
interfaces file 2-145
reading data from a server 3-148
transaction states 2-81
types of servers 1-2
what they do 1-1

Server-to-server connections
default passwords 3-194
defining and clearing

passwords 3-192
storing remote passwords 3-194

Server-to-server RPCs 2-161
Setting

capabilities 2-33
server options 3-168

Signal callback 2-31
defining 2-31
how triggered 2-13

installing 2-31, 3-22
when called 2-13

sizeof operator 2-116
Sort order

definition of A-9
SQL

dynamic SQL 2-63
static SQL 2-64

SQL Server
capabilities diagrammed 1-3
definition of A-9
differences from Open Server 1-2
extended error data 2-79
handling server messages 2-74
implementation of dynamic SQL 2-64
listing messages 2-74
options

list of 2-117
setting and retrieving 3-173
two ways to set 2-117

restrictions 2-180
similarities to Open Server 1-2
specifying a server to connect to 2-145
transaction states 2-81
where a process’s host name is

listed 2-144
SQL Server Reference Manual xxii
SQLCA structure 2-181, 2-186

and CS_EXTRA_INF property 2-77
definition of A-9
no support for sequenced

messages 2-78
sqlca.h header file 2-83
SQLCA_TYPE structure type 3-114
SQLCODE structure 2-183, 2-186

and CS_EXTRA_INF property 2-77
definition of A-9
mapping Client-Library messages

to 2-183
mapping server messages to 2-183
no support for sequenced

messages 2-78
SQLCODE_TYPE structure type 3-114
SQLSTATE structure 2-184, 2-187

Client-Library/C Reference Manual 31

Open Client Release 10.0

and CS_EXTRA_INF property 2-77
no support for sequenced

messages 2-78
SQLSTATE_TYPE structure type 3-114
Statement

definition of A-10
executing a statement

with no variables 2-39
with variables 2-39

Static SQL 2-64
Status result 2-165
Status variable

definition of A-10
Steps in an application 1-9
Stored procedures

and ct_results 3-207
definition of A-10
fetching return parameters 3-144
parameter values passed by

reference 2-162
results

return parameter 2-162, 2-165
return status 2-162, 2-165

retrieving description of return
status 3-109

retrieving return status 3-149
return status processing 3-204
run-time errors 3-207
two ways to execute 2-160

Structures 2-185 to 2-187
‘‘hidden’’ and ‘‘exposed’’ 2-185
command structure 1-7
connection structure 1-7
context structure 1-7
control

discussion of 1-7
CS_BROWSEDESC structure 2-43
CS_CAP_TYPE structure

manipulating bits 2-115
CS_CLIENTMSG structure 2-45
CS_COMMAND structure 1-7
CS_CONNECTION structure 1-7
CS_CONTEXT structure 1-7
CS_DATAFMT structure 2-49

CS_IODESC structure 2-54
CS_SERVERMSG structure 2-56
parent structure property 2-149
pointers to structures 2-124
relationship of control structures

diagrammed 1-8
SQLCA structure 2-181
SQLCODE structure 2-183
SQLSTATE structure 2-184

SYBASE Open Client
description of 1-4

SYBASE Open Server
description of 1-4

Symbols
CS_CONSTAT_CONNECTED 2-139
CS_CONSTAT_DEAD 2-139
CS_CURSTAT_CLOSED 2-140
CS_CURSTAT_DECLARED 2-140
CS_CURSTAT_NONE 2-140
CS_CURSTAT_OPEN 2-140
CS_CURSTAT_RDONLY 2-140
CS_CURSTAT_UPDATABLE 2-140
CS_FIRST_CHUNK 2-47, 2-58
CS_FMT_NULLTERM 2-51
CS_FMT_PADBLANK 2-51
CS_FMT_PADNULL 2-51
CS_FMT_UNUSED 2-51
CS_HASEED 2-58
CS_LAST_CHUNK 2-48, 2-58

System Administrator
definition of A-10

System descriptor
definition of A-10

System procedures
definition of A-10

System registered procedures
definition of A-10

T
Tabular Data Stream

See TDS
Target file

definition of A-10

32 Index

Open Client Release 10.0

TDS
changing a connection’s TDS version

level 2-33
connection’s default version

level 2-33
default packet sizes vary by

platform 3-223
definition of A-10
determining capabilities 3-37
negotiating a TDS format 3-157, 3-225
negotiating the version level 2-34
packet marked as End of Message

(EOM) 3-191
packet size property 2-149
pass-through operation 3-157, 3-190,

3-225
receiving a TDS packet 3-190
sending a TDS packet to a

server 3-222
TDS version property 2-151

CS_TDS_40 value 2-151
CS_TDS_42 value 2-151
CS_TDS_46 value 2-151
CS_TDS_50 value 2-151

transferring login response
information 3-156, 3-224

Technical Support xxiv
Text and image 2-188 to 2-192

and CS_TEXTSIZE_OPT option 2-152
and CS_IODESC structure 2-54, 3-101
datatypes 2-200
describing text and image data 2-54
determining length of value before

retrieving it 3-150
inserting text and image values 2-191
limiting text and image values 2-152
reading data for later update 3-150
retrieving a text or image

column 2-188
retrieving large values with

ct_get_data 3-150
send-data commands 3-56
sending chunks of data to the

server 3-216

storing text and image data 2-188
text and image limit property 2-152
text timestamp 2-188
updating a text or image

column 2-190, 3-217
using ct_get_data to fetch text or image

values 2-188
Text timestamp 2-188
Thread

definition of A-11
Timeouts

CS_NO_LIMIT timeout value 2-145
default value 2-152
login timeout property 2-145
timeout property 2-152

Timestamp column
used for browse mode 2-8

Tracing diagnostic information 3-106
Transaction

definition of A-11
Transaction mode

definition of A-11
Transaction name property 2-152
Transaction states 2-81

CS_TRAN_COMPLETED 2-81
CS_TRAN_FAIL 2-81
CS_TRAN_IN_PROGRESS 2-81
CS_TRAN_STMT_FAIL 2-81
CS_TRAN_UNDEFINED 2-81
retrieving in a server message

callback 2-82
retrieving in main-line code 2-82
retrieving the current server

transaction state 3-201
when information is available 2-82

Transact-SQL
definition of A-11

Transact-SQL commands 3-55
Triggering callbacks 2-12
Trusted-user security

handshakes 2-150, 2-175
and CS_SEC_NEGOTIATE

property 3-167
negotiation callback 2-24

Client-Library/C Reference Manual 33

Open Client Release 10.0

security labels 3-166
Typedefs

Open Client 2-195
Types 2-193 to 2-201

See Also Datatypes

U
Unused parameters 2-123
Update columns

identifying 3-176
Updating

key columns 3-163
text or image columns 2-190

User allocation function property 2-153
User data property 2-154
User free function property 2-154
User name property 2-156
User-allocated data

and cs_config 2-154
defining 2-154

User-defined datatypes 2-200
User-defined formats

retrieving 3-154
User-defined memory routine

clearing 2-154
replacing with ct_config 2-154

User-defined messages
legal message IDs 2-114

User-supplied memory free routine
identifying 2-154

V
Variables

binding results to program
variables 3-7

defining host variable formats 3-177
Version

Client-Library 3-159
version property 2-156
version string property 2-156

determining the value of the
CS_VERSION property 3-160

34 Index

Open Client Release 10.0

