;;;; math-utils.vector.scm -*- Scheme -*- ;;;; Kon Lovett, Jul '23 ;;;; Kon Lovett, Feb '24 ;;;; Issues ;; ;; - Functor (VECTOR FIELD) - f32vector & fL | ... (module (math-utils vector) (;export vector-sum absolute-magnitude cosine-similarity vector-apply vector-reduce vector-compare vector-compare2 dot-product cross-product softmax softmax*) (import scheme) (import (chicken base)) (import (chicken fixnum)) (import (chicken flonum)) (import (chicken type)) (import math-utils) (define-type real (or integer ratnum float)) (define-type boolean-vector (vector-of boolean)) (define-type number-vector (vector-of number)) (define-type nary-numeric (number #!rest number -> number)) (: vector-sum (number-vector -> number)) (: absolute-magnitude (number-vector -> number)) (: cosine-similarity (number-vector number-vector -> number)) (: vector-reduce ((number number -> number) number number-vector #!optional fixnum fixnum -> number)) (: vector-apply (nary-numeric #!rest number-vector -> number-vector)) (: vector-compare2 (number-vector number-vector -> number)) (: vector-compare (#!rest number-vector -> number)) (: dot-product (number-vector number-vector -> number)) (: cross-product (number-vector number-vector -> (or number number-vector))) (: softmax (number-vector -> number-vector)) (: softmax* (number-vector #!optional real -> number-vector)) ;; (define-inline (sqrt-exact x) (inexact->exact (sqrt x))) (define (sumsqr acc elm) (+ (sqr elm) acc)) ;; (define (vector-reduce f id v #!optional (st 0) (ed (vector-length v))) (let loop ((i st) (acc id)) (if (fx= i ed) acc (loop (fx+ i 1) (f acc (vector-ref v i)))) ) ) (define (vector-sum v) (vector-reduce + 0 v)) (define (absolute-magnitude v) (sqrt-exact (vector-reduce sumsqr 0 v))) ;https://en.wikipedia.org/wiki/Cosine_similarity (define (cosine-similarity a b) ;unroll (let ((len (vector-length a))) (let loop ((i 0) (dot 0) (maga 0) (magb 0)) (if (fx= i len) (/ dot (sqrt-exact (* maga magb))) (let ((ai (vector-ref a i)) (bi (vector-ref b i))) (loop (fx+ i 1) (+ (* ai bi) dot) (sumsqr maga ai) (sumsqr magb bi)) ) ) ) ) ) ; assumes all same length (define-inline (*vector-apply/1 f a) (let* ((len (vector-length a)) (r (make-vector len)) ) (do ((i 0 (fx+ i 1))) ((fx= i len) r) (set! (vector-ref r i) (f (vector-ref a i))) ) ) ) ; assumes all same length (define (vector-apply f . vs) (let* ((a (car vs)) (len (vector-length a)) (r (make-vector len)) ) (do ((i 0 (fx+ i 1))) ((fx= i len) r) (set! (vector-ref r i) (apply f (map (cut vector-ref <> i) vs))) ) ) ) (define (vector-compare2 a b) (let* ((alen (vector-length a)) (blen (vector-length b)) (dlen (fx- alen blen)) ) (if (not (fx= 0 dlen)) dlen (let loop ((i 0)) (if (fx= i alen) 0 (let ((d (- (vector-ref a i) (vector-ref b i)))) (if (not (= 0 d)) d (loop (fx+ i 1)) ) ) ) ) ) ) ) (define (vector-compare . vs) (let loop ((vs vs)) (if (or (null? vs) (null? (cdr vs))) 0 (let ((d (vector-compare2 (car vs) (cadr vs)))) (if (not (= 0 d)) d (loop (cdr vs)) ) ) ) ) ) (define (dot-product a b) (let ((len (vector-length a))) (do ((i 0 (fx+ i 1)) (acc 0 (+ acc (* (vector-ref a i) (vector-ref b i))))) ((fx= i len) acc)) ) ) ;0 -> error ;1 2 -> X, 3 -> #(X Y Z), 4 -> #(X Y Z W), 8 -> #(X Y Z W I J K L), * -> Error (define (cross-product a b) (let ((alen (vector-length a)) (blen (vector-length b))) (cond ((or (fx= 0 alen) (fx= 0 blen)) 0) ((fx= alen blen) (case alen ((1) (* (vector-ref a 0) (vector-ref b 0)) ) ((2) (- (* (vector-ref a 0) (vector-ref b 1)) (* (vector-ref a 1) (vector-ref b 0))) ) ((3) (vector ;0 (- (* (vector-ref a 1) (vector-ref b 2)) (* (vector-ref a 2) (vector-ref b 1))) ;1 (- (* (vector-ref a 2) (vector-ref b 0)) (* (vector-ref a 0) (vector-ref b 2))) ;2 (- (* (vector-ref a 0) (vector-ref b 1)) (* (vector-ref a 1) (vector-ref b 0)))) ) ((4) ;{ {a[0] * b[0]} - {a[1] * b[1]} - {a[2] * b[2]} - {a[3] * b[3]} } ;{ {a[0] * b[1]} + {a[1] * b[0]} + {a[2] * b[3]} - {a[3] * b[2]} } ;{ {a[0] * b[2]} - {a[1] * b[3]} + {a[2] * b[0]} + {a[3] * b[1]} } ;{ {a[0] * b[3]} + {a[1] * b[2]} - {a[2] * b[1]} + {a[3] * b[0]} } (vector ;0 (- (* (vector-ref a 0) (vector-ref b 0)) (* (vector-ref a 1) (vector-ref b 1)) (* (vector-ref a 2) (vector-ref b 2)) (* (vector-ref a 3) (vector-ref b 3))) ;1 (- (+ (+ (* (vector-ref a 0) (vector-ref b 1)) (* (vector-ref a 1) (vector-ref b 0))) (* (vector-ref a 2) (vector-ref b 3))) (* (vector-ref a 3) (vector-ref b 2))) ;2 (+ (+ (- (* (vector-ref a 0) (vector-ref b 2)) (* (vector-ref a 1) (vector-ref b 3))) (* (vector-ref a 2) (vector-ref b 0))) (* (vector-ref a 3) (vector-ref b 1))) ;3 (+ (- (+ (* (vector-ref a 0) (vector-ref b 3)) (* (vector-ref a 1) (vector-ref b 2))) (* (vector-ref a 2) (vector-ref b 1))) (* (vector-ref a 3) (vector-ref b 0)))) ) ((8) ;{ {a[0] * b[0]} - {a[1] * b[1]} - {a[2] * b[2]} - {a[3] * b[3]} - {b[4] * a[4]} - {b[5] * a[5]} - {b[6] * a[6]} - {b[7] * a[7]} } ;{ {a[0] * b[1]} + {a[1] * b[0]} + {a[2] * b[3]} - {a[3] * b[2]} - {b[4] * a[5]} + {b[5] * a[4]} + {b[6] * a[7]} - {b[7] * a[6]} } ;{ {a[0] * b[2]} - {a[1] * b[3]} + {a[2] * b[0]} + {a[3] * b[1]} - {b[4] * a[6]} - {b[5] * a[7]} + {b[6] * a[4]} + {b[7] * a[5]} } ;{ {a[0] * b[3]} + {a[1] * b[2]} - {a[2] * b[1]} + {a[3] * b[0]} - {b[4] * a[7]} + {b[5] * a[6]} - {b[6] * a[5]} + {b[7] * a[4]} } ;{ {b[4] * a[0]} - {b[5] * a[1]} - {b[6] * a[2]} - {b[7] * a[3]} + {a[4] * b[0]} + {a[5] * b[1]} + {a[6] * b[2]} + {a[7] * b[3]} } ;{ {b[4] * a[1]} + {b[5] * a[0]} + {b[6] * a[3]} - {b[7] * a[2]} - {a[4] * b[1]} + {a[5] * b[0]} - {a[6] * b[3]} + {a[7] * b[2]} } ;{ {b[4] * a[2]} - {b[5] * a[3]} + {b[6] * a[0]} + {b[7] * a[1]} - {a[4] * b[2]} + {a[5] * b[3]} + {a[6] * b[0]} - {a[7] * b[1]} } ;{ {b[4] * a[3]} + {b[5] * a[2]} - {b[6] * a[1]} + {b[7] * a[0]} - {a[4] * b[3]} - {a[5] * b[2]} + {a[6] * b[1]} + {a[7] * b[0]} } (vector ;0 (- (* (vector-ref a 0) (vector-ref b 0)) (* (vector-ref a 1) (vector-ref b 1)) (* (vector-ref a 2) (vector-ref b 2)) (* (vector-ref a 3) (vector-ref b 3)) (* (vector-ref b 4) (vector-ref a 4)) (* (vector-ref b 5) (vector-ref a 5)) (* (vector-ref b 6) (vector-ref a 6)) (* (vector-ref b 7) (vector-ref a 7))) ;1 (- (+ (+ (- (- (+ (+ (* (vector-ref a 0) (vector-ref b 1)) (* (vector-ref a 1) (vector-ref b 0))) (* (vector-ref a 2) (vector-ref b 3))) (* (vector-ref a 3) (vector-ref b 2))) (* (vector-ref b 4) (vector-ref a 5))) (* (vector-ref b 5) (vector-ref a 4))) (* (vector-ref b 6) (vector-ref a 7))) (* (vector-ref b 7) (vector-ref a 6))) ;2 (+ (+ (- (- (+ (+ (- (* (vector-ref a 0) (vector-ref b 2)) (* (vector-ref a 1) (vector-ref b 3))) (* (vector-ref a 2) (vector-ref b 0))) (* (vector-ref a 3) (vector-ref b 1))) (* (vector-ref b 4) (vector-ref a 6))) (* (vector-ref b 5) (vector-ref a 7))) (* (vector-ref b 6) (vector-ref a 4))) (* (vector-ref b 7) (vector-ref a 5))) ;3 (+ (- (+ (- (+ (- (+ (* (vector-ref a 0) (vector-ref b 3)) (* (vector-ref a 1) (vector-ref b 2))) (* (vector-ref a 2) (vector-ref b 1))) (* (vector-ref a 3) (vector-ref b 0))) (* (vector-ref b 4) (vector-ref a 7))) (* (vector-ref b 5) (vector-ref a 6))) (* (vector-ref b 6) (vector-ref a 5))) (* (vector-ref b 7) (vector-ref a 4))) ;4 (+ (+ (+ (+ (- (- (- (* (vector-ref b 4) (vector-ref a 0)) (* (vector-ref b 5) (vector-ref a 1))) (* (vector-ref b 6) (vector-ref a 2))) (* (vector-ref b 7) (vector-ref a 3))) (* (vector-ref a 4) (vector-ref b 0))) (* (vector-ref a 5) (vector-ref b 1))) (* (vector-ref a 6) (vector-ref b 2))) (* (vector-ref a 7) (vector-ref b 3))) ;5 (+ (- (+ (- (- (+ (+ (* (vector-ref b 4) (vector-ref a 1)) (* (vector-ref b 5) (vector-ref a 0))) (* (vector-ref b 6) (vector-ref a 3))) (* (vector-ref b 7) (vector-ref a 2))) (* (vector-ref a 4) (vector-ref b 1))) (* (vector-ref a 5) (vector-ref b 0))) (* (vector-ref a 6) (vector-ref b 3))) (* (vector-ref a 7) (vector-ref b 2))) ;6 (- (+ (+ (- (+ (+ (- (* (vector-ref b 4) (vector-ref a 2)) (* (vector-ref b 5) (vector-ref a 3))) (* (vector-ref b 6) (vector-ref a 0))) (* (vector-ref b 7) (vector-ref a 1))) (* (vector-ref a 4) (vector-ref b 2))) (* (vector-ref a 5) (vector-ref b 3))) (* (vector-ref a 6) (vector-ref b 0))) (* (vector-ref a 7) (vector-ref b 1))) ;7 (+ (+ (- (- (+ (- (+ (* (vector-ref b 4) (vector-ref a 3)) (* (vector-ref b 5) (vector-ref a 2))) (* (vector-ref b 6) (vector-ref a 1))) (* (vector-ref b 7) (vector-ref a 0))) (* (vector-ref a 4) (vector-ref b 3))) (* (vector-ref a 5) (vector-ref b 2))) (* (vector-ref a 6) (vector-ref b 1))) (* (vector-ref a 7) (vector-ref b 0)))) ) (else (error 'cross-product "undefined for this length" alen blen) ) ) ) (else (error 'cross-product "undefined for varying length" alen blen)) ) ) ) ;1 ~= summ(vmax(V)) but 1 ?= summ(V), normalize (define (softmax v) (let* ((ve (*vector-apply/1 exp v)) (sum (vector-sum ve)) ) (*vector-apply/1 (cut / <> sum) ve) ) ) #| We can also use T values less than 1 to INCREASE the distance between the values entering softmax, and in the limit as T->0, we max the maximum value be infinitely far from the rest as it enters the exponent function. In code, this must be handled as a special case that finds the maximum output instead of selecting an output probabilistically. So the legal values of T range from 0 (pick the maximum) through infinity (where all values would have equal probabilities because they are all 0 as they enter softmax). temp = 1/alpha |# (define-constant EPSILON (inexact->exact flonum-epsilon)) (define-inline (near? m n) (or (= m n) (<= (abs (- m n)) EPSILON))) (define (softmax* v #!optional (t 1)) (assert (not (near? 0 t))) (softmax (if (= t 1) v (*vector-apply/1 (cut / <> t) v))) ) ) ;(math-utils vector)